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3 Newtonian orbital dynamics

In this chapter we apply the tools developed in the previous two chapters to an exploration
of the orbital dynamics of bodies subjected to their mutual gravitational attractions. Many
aspects of what we learned in Chapters 1 and 2 will be put to good use, and the end result
will be considerable insight into the behavior of our own solar system. To be sure, the
field of celestial mechanics has a rich literature that goes back centuries, and this relatively
short chapter will only scrape the surface. We believe, however, that we have sampled the
literature well, and selected a good collection of interesting topics. Some of the themes
introduced here will be featured in later chapters, when we turn to relativistic aspects of
celestial mechanics.

We begin in Sec. 3.1 with a very brief survey of celestial mechanics, from Newton to
Einstein. In Sec. 3.2 we give a complete description of Kepler’s problem, the specification
of the motion of two spherical bodies subjected to their mutual gravity. In Sec. 3.3 we
introduce a powerful formalism to treat Keplerian orbits perturbed by external bodies or
deformations of the two primary bodies; in this framework of osculating Keplerian orbits,
the motion is at all times described by a sequence of Keplerian orbits, with constants of
the motion that evolve as a result of the perturbation. We shall apply this formalism to
a number of different situations, and highlight a number of important processes that take
place in the solar system and beyond. In Sec. 3.5 we examine the three-body problem and
briefly touch upon the general case of N bodies. We conclude in Sec. 3.6 with a review of
the Lagrangian formulation of Newtonian mechanics.

3.1 Celestial mechanics from Newton to Einstein

The triumph of Newton’s mechanics and universal gravitation is largely contained in the
confrontation with the observed motion of celestial bodies in our solar system, which was
initiated by Kepler even before Newton’s laws became available. The two-body dynamics
of Newton’s theory immediately accounted for Kepler’s laws, which state that the orbits
of bodies in the solar system are ellipses that trace out equal areas in equal times, with
periods inversely proportional to the 3/2 power of their diameters. Edmund Halley used
Newton’s equations to point out that the comets that had been observed in 1531, 1607, and
1682 were actually a single object that orbits the sun with a period ranging from 75 to
76 years. Refined orbital calculations carried out by Alexis Clairaut led to the successful
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139 3.1 Celestial mechanics from Newton to Einstein

prediction of the comet’s return in 1759. The difficult problem of describing the detailed
motion of the Moon, in particular the advance of its perigee, was successfully tackled by
Clairaut using Newtonian theory; a first attempt was actually made by Newton himself,
but with somewhat incorrect results that discouraged him and motivated him to start
a new career at the Royal Mint. Finally, in a triumph of theoretical prediction, Urbain
Jean Joseph Le Verrier in France, and independently John Couch Adams in England,
pointed out that certain anomalies in the orbit of Uranus could best be explained by
the existence of an additional planet, and each astronomer made a rough prediction of
where such a planet might be found. In 1846, a day after receiving Le Verrier’s prediction
for its position, German astronomers discovered the new planet, which is now called
Neptune.

This accumulation of successes built such confidence in Newton’s theory that when
the crisis occurred, the shock was almost palpable. The crisis was caused by Mercury.
By the middle of the nineteenth century, astronomers had established that the perihelion of
Mercury (the point of closest approach to the Sun) was advancing at a rate of 575 arcseconds
per century relative to the fixed stars. Although the two-body solution of Newton’s theory
requires the perihelion to be fixed in direction, it seemed clear that the advance should be
caused by the gravitational influences of the other planets (mostly Venus because of its
proximity, and Jupiter because of its large mass) on Mercury’s orbit. Fresh from his success
with the prediction of Neptune, Le Verrier applied his methods to the problem of Mercury.
He calculated the amount that each planet would contribute to Mercury’s perihelion advance
(see Table 3.1), but the total fell short of the measured value, by an amount comparable to
40 arcseconds per century. The modern value of the discrepancy is 42.98 ± 0.04 arcseconds
per century, based upon improved measurements of Mercury’s orbit using radar ranging,
combined with improved data on the masses and orbits of the other planets, and accurate
numerical ephemeris codes for calculating orbits.

The discrepancy could not be attributed to calculational errors or faulty observations,
and no viable explanation could be found for the next 50 years. In the spirit of Neptune,
Le Verrier and others supported the existence of another planet between Mercury and the
Sun, which was given the provisional name Vulcan. But despite systematic astronomical
searches, no credible evidence for such a planet was ever discovered. If changing the
solar system would not do, perhaps a change of theory might fare better? Simon Newcomb
proposed that all would be well with Mercury if the inverse square law of Newtonian gravity
were changed to the inverse power of 2.0000001574. Such a change, however, would also
contribute to the advance of the lunar perigee, and once improved data on the lunar orbit
became available, Newcomb’s proposal was shown not to be viable.

The resolution of the problem of Mercury is by now legendary. The place is Berlin,
the time November 1915. Albert Einstein, using the new equations of general relativity,
calculates the motion of Mercury and shows that the relativistic laws of orbital motion
account for the notorious discrepancy. Einstein was overjoyed, and later wrote to a friend
that this discovery gave him palpitations of the heart. The modern value for the shift
predicted by general relativity, using the best data for all relevant quantities, is 42.98
arcseconds per century, in perfect agreement with the measured value.
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140 Newtonian orbital dynamics

Table 3.1 Planetary contributions to Mercury’s
perihelion advance (in arcseconds per century).

Planet Advance

Venus 277.8
Earth 90.0
Mars 2.5
Jupiter 153.6
Saturn 7.3

Total 531.2
Discrepancy 42.9

Modern measured value 42.98 ± 0.04
General relativity prediction 42.98

3.2 Two bodies: Kepler’s problem

Kepler’s problem is to determine the motion of two bodies subjected to their mutual
gravitational attraction, under the assumption that each body can be taken to be spherically
symmetric. This is the simplest problem of celestial mechanics, but also one of the most
relevant, because to a good first approximation, the motion of any planet around the Sun
can be calculated while ignoring the effects of the other planets. It is also a problem that
can be solved exactly and completely, in terms of simple functions.

3.2.1 Effective one-body description

The foundations for Kepler’s problem were provided back in Sec. 1.6.7. We have a first
body of mass m1, position r1, velocity v1 = d r1/dt , and acceleration a1 = dv1/dt , and
a second body of mass m2, position r2, velocity v2 = d r2/dt , and acceleration a2 =
dv2/dt . We place the origin of the coordinate system at the system’s barycenter R, so that
m1r1 + m2r2 = 0. The position of each body is then given by

r1 = m2

m
r, r2 = −m1

m
r, (3.1)

in which m := m1 + m2 is the total mass and r := r1 − r2 the separation between bodies.
Similar relations hold between v1, v2 and the relative velocity v := v1 − v2 = d r/dt . The
relative acceleration a := a1 − a2 = dv/dt is obtained from Eq. (1.220) by removing all
terms that involve the multipole moments of each body (which vanish when the bodies are
spherical); we have

a = −Gm

r2
n, (3.2)

where r := |r| is the distance between bodies, and n := r/r a unit vector that points from
body 2 to body 1. This is the equation of motion for the relative orbit, and thanks to Eq. (3.1),
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its solution is sufficient to determine the individual motion of each body. Equation (3.2)
can be interpreted as describing the motion of a fictitious particle at position r in the
field of a gravitating center of mass m at r = 0; as such our two-body problem has been
reformulated as an effective one-body problem. This radical simplification of the original
problem, which involved six independent degrees of freedom (the three components of
each position vector) instead of the current three (the three components of the separation
vector), is a consequence of the conservation of total momentum, which implies that the
motion of the barycenter position R is uniform and therefore trivial.

According to Eq. (1.221), the total energy of the two-body system is given by

E = 1

2
μv2 − Gμm

r
, (3.3)

in which μ := m1m2/m is the reduced mass of the system; to obtain this expression we
once more dropped all terms involving multipole moments, and set V = d R/dt = 0 in the
barycentric frame. The system’s total angular momentum is given by Eq. (1.204), which
reduces to

L = m1r1 × v1 + m2r2 × v2 = μr × v (3.4)

for a two-body system. Because the bodies are assumed to have no spin, and because
the angular momentum is contained entirely in the orbital motion, we use the standard
notation L instead of J for the angular-momentum vector. It is a simple matter to verify
that d E/dt = 0 by virtue of Eq. (3.2), and that d L/dt = 0 by virtue of the sole fact that
the acceleration a is directed along r .

The constancy of the angular-momentum vector has far-reaching consequences on the
motion of the bodies. Because L is a constant vector orthogonal to both r and v, the motion
must take place in a fixed plane that is at all times perpendicular to L. We therefore have
achieved another radical simplification of the problem: by confining the motion to a plane
we have eliminated one degree of freedom from the original three associated with the
effective one-body problem.

3.2.2 Orbital plane

We take the orbital plane to coincide with the x–y plane of the coordinate system, and
we align L with the z-direction. To simplify the notation in subsequent developments, we
write

L = μh, h := r × v = hez, (3.5)

with h := |h| denoting the magnitude of the constant vector r × v.
It is helpful to describe the motion with the polar coordinates r and φ, defined such that

the components of the separation vector are given by

r = [r cos φ, r sin φ, 0]; (3.6)

both r and φ depend on time. A vectorial basis in the orbital plane can be built from the
constant unit vectors ex and ey , but it is useful to introduce also the time-dependent unit
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vectors

n := [cos φ, sin φ, 0], λ := [− sin φ, cos φ, 0], (3.7)

which are closely tied to the description of the orbital motion. The vector n := r/r points
from body 2 to body 1, while λ is orthogonal to it. The vectors satisfy

dn

dφ
= λ,

dλ

dφ
= −n. (3.8)

The basis is completed with ez , which is normal to the orbital plane and aligned with the
angular-momentum vector.

The vectors r , v, and a can each be decomposed in the orbital basis. Simple computations
involving Eqs. (3.8) produce

r = r n, (3.9a)

v = ṙ n + r φ̇ λ, (3.9b)

a = (
r̈ − r φ̇2

)
n + 1

r

d

dt

(
r2φ̇

)
λ, (3.9c)

in which an overdot indicates differentiation with respect to t .

3.2.3 First integrals

The acceleration of Eq. (3.9) may now be inserted within Eq. (3.2), and the absence of a
component along λ immediately implies that r2φ̇ is a constant of the motion. Because r2φ̇ is
equal to the z (and only non-vanishing) component of the vector r × v, we have rediscovered
the statement of angular-momentum conservation. Taking Eq. (3.5) into account, we have
that

r2φ̇ = h. (3.10)

In this form we can see that conservation of angular momentum gives rise to Kepler’s
second law: r (rdφ) is twice the area swept by the orbit as it advances by an angle dφ, and
r2φ̇ is twice the area swept per unit time; conservation of angular momentum implies equal
areas for equal times.

The radial component of the equation of motion yields r̈ − r φ̇2 = −Gm/r2, or

r̈ − h2

r3
= −Gm

r2
(3.11)

after involving Eq. (3.10). This second-order differential equation for r (t) can be integrated
once by applying the ṙ -trick: multiply the equation by ṙ and recognize that each term is a
total derivative with respect to time. Integration produces

1

2
ṙ2 + h2

2r2
− Gm

r
= ε, (3.12)

in which ε is another constant of the motion. From Eq. (3.3) it is easy to see that E = με,
and we have rediscovered the statement of energy conservation.
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Fig. 3.1 Effective potential for Kepler’s problem, together with lines of constant ε. The radial variable r is presented in units of
p := h2/(Gm), and Veff is presented in units of Gm/p. The regions of allowed motion correspond to ε ≥ Veff(r), and
turning points occur when ε = Veff(r). The different types of Keplerian motion (hyperbolic, parabolic, and elliptical)
are shown.

It is instructive to rewrite Eq. (3.12) in the form

1

2
ṙ2 = ε − Veff (r ), (3.13)

in which the effective radial potential is defined as

Veff (r ) := h2

2r2
− Gm

r
. (3.14)

This new form allows us to explore the qualitative features of Keplerian motion without
having to perform additional calculations. In Fig. 3.1 we display a plot of Veff (r ) for h �= 0,
with zero on the vertical axis denoting the limiting value of the effective potential as
r → ∞. The potential consists of an attractive (negative) gravitational well, and a repulsive
(positive) centrifugal barrier rising to infinity as r → 0. Motion is allowed when ṙ2 ≥ 0,
that is, when ε ≥ Veff (r ), and regions where this condition is met are easily identified in
the figure. A turning point occurs when ṙ = 0 and ε = Veff (r ); at such points the radial
velocity changes sign, and the motion changes from incoming to outgoing, or from outgoing
to incoming.

We can easily imagine how a particle would move in this effective potential. If the
particle has an energy ε > 0, then there is a single turning point at some innermost radius
rmin, and the motion takes place for r ≥ rmin. The particle starts at infinity with a negative
radial velocity ṙ = −√

2ε and a vanishing angular velocity φ̇. As r decreases, ṙ becomes
increasingly negative, and φ̇ increases to obey conservation of angular momentum, until the
particle reaches the turning point at r = rmin. At this point ṙ turns positive, and the particle
begins its way back to infinity. As we shall see below, the particle follows a hyperbola in the
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orbital plane, and motion with ε > 0 is known as hyperbolic motion. Such an orbit is not
bound to the gravitating center, as revealed by the fact that the total energy is dominated by
(positive) kinetic energy instead of (negative) gravitational potential energy. The limiting
case of an unbound orbit corresponds to ε = 0. Here the particle begins from rest at infinity,
proceeds to a single turning point at r = rmin, and returns to a state of rest at infinity. In
this case the path is a parabola in the orbital plane, and motion with ε = 0 is known as
parabolic motion.

When ε < 0, that is, when gravitational potential energy dominates over kinetic energy,
the diagram reveals that there are now two turning points at r = rmin and r = rmax. In this
case the orbital motion is bound to the gravitating center, and takes place between the
innermost and outermost radii. We shall see that the bound orbit describes an ellipse, and
motion with ε < 0 is known as elliptical motion. A special case of elliptical motion occurs
when ε is made equal to the minimum value of the effective potential. In this case the
turning points merge to a single radius r0, and motion proceeds at this fixed radius; this is

a circular orbit with h2 = Gmr0, φ̇ =
√

Gm/r3
0 , and ε = −Gm/(2r0).

The preceding discussion was couched in terms of a particle moving in the effective
potential Veff (r ). It is important to understand, however, that this “particle” at position r(t)
is in fact a fictitious representation of the relative orbit, which, as we saw back in Eq. (3.2),
is subjected to a fictitious gravitating center of mass m at r = 0. The motion described
previously is therefore a description of the relative orbital motion. But thanks to Eqs. (3.1),
the motion of each body is merely a scaled version of the relative motion, and it can be
described in the same language; the bodies move about each other on opposite sides of the
barycenter. In the limit of small mass ratios, m1/m2 � 1, it becomes increasingly true that
r1 → r and r2 → 0; in this limiting case m1 becomes a test mass in the field of m2 → m,
its orbit coincides with the relative orbit, and m2 stays put at the barycentric position.

3.2.4 Solution to Kepler’s problem

Formal solution; integrable systems

Formally, a solution to Kepler’s problem can be obtained by integrating Eq. (3.13) to get

t − ti = ±
∫ r

ri

dr ′√
2[ε − Veff (r ′)]

, (3.15)

inverting the result for r (t), and integrating Eq. (3.10) to get

φ − φi = h

∫ t

ti

dt ′

r (t ′)2
, (3.16)

which gives φ(t). In these equations, ti is the time at which r = ri , and φi is the orbital
angle at time ti . By following this procedure we convert the task of solving the second-
order differential equations of (3.2) to the task of performing two integrations, or, to use an
older but still popular terminology, evaluating two quadratures. When a dynamical problem
such as this one can be reduced to doing quadratures, the problem is said to be completely
integrable. A full discussion of integrable systems is beyond the scope of this book, but
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roughly speaking, a dynamical system is completely integrable when it possesses a sufficient
number of conserved quantities. In the case of Kepler’s problem, it is the constancy of total
momentum (which allowed us to eliminate the motion of the barycenter), of total angular
momentum (which allowed us to restrict the motion to a plane and to reduce the angular
equation to φ̇ = h/r2), and of energy (which resulted in an equation for ṙ2) that make the
problem completely integrable.

Completely integrable systems are mathematically elegant, and are extremely convenient
when they come along, but unfortunately they are rather rare in physics. Fortunately for us,
however, the Kepler problem is one of them. More generally, because Eq. (3.15) is valid
for any effective potential Veff (r ), motion in any spherically symmetric, static potential is
always integrable.

The formal solutions of Eqs. (3.15) and (3.16) are not very useful from a practical point
of view. We could try to carry out the integrals explicitly, but the results would not be
illuminating. Alternatively, we could evaluate the integrals numerically, but the resulting
tables would be of limited utility, and they would provide very little insight. We shall
therefore proceed differently.

Spatial solution; conic sections

As a first step toward integrating the equations of motion, we eliminate t from the system
of equations (3.10), (3.11), and adopt the orbital angle φ as independent variable. This
strategy allows us to unravel the spatial aspects of the orbit – its shape in the orbital plane –
and we shall return to the problem of describing the motion in time at a later stage. We also
adopt u := 1/r as a convenient substitute for r , and derive a differential equation for it by
applying the chain rule of differential calculus. For example, we have that ṙ = −u−2u̇ =
−u−2φ̇u′ = −hu′ and r̈ = −h2u2u′′, in which a prime indicates differentiation with respect
to φ. Making the substitutions within Eq. (3.11), we quickly arrive at

u′′ + u = Gm

h2
. (3.17)

The general solution to this simple equation is

u = Gm

h2

[
1 + e cos(φ − ω)

]
, (3.18)

in which e and ω are arbitrary constants of integration.
Returning to the original radial variable, the spatial solution to Kepler’s problem is

r = p

1 + e cos(φ − ω)
, (3.19)

in which

p := h2

Gm
(3.20)

is a quantity known as the orbit’s semi-latus rectum. We note that a solution with e < 0
is equivalent to one with e > 0, provided that ω is changed to ω + π ; we will adopt the
convention that e is never negative.
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The curve described by Eq. (3.19) is a conic section, an ellipse when e < 1, a hyperbola
when e > 1, and a parabola when e = 1, with r = 0 situated at one of the curve’s foci. The
parameter e is called the eccentricity of the orbit. Note that r achieves a minimum when
φ = ω. This is the point of closest approach in the orbit, called the periapsis or pericenter,
and ω is known as the longitude of pericenter ; its role is to fix the orientation of the orbit
in the orbital plane. The term pericenter is usually adapted to reflect the identity of specific
astronomical bodies. For example, we have perihelion for the Sun, perigee for the Earth,
perijove for Jupiter, and periastron for binary star systems. No consensus has emerged to
date for the closest approach to a black hole, but the word peribothron is gaining popularity;
it was crafted by our colleague Sterl Phinney from the Greek root “bothros,” which means
hole or pit.

We examine first the elliptical orbits with e < 1. In this case the motion described by
Eq. (3.19) is periodic, with period �φ = 2π , and we have recovered Kepler’s first law, that
planets move on elliptical paths around the Sun. We have already seen that φ = ω describes
the periapsis or pericenter, and we now see that φ = ω + π describes the point of greatest
separation, called apoapsis or apocenter. The pericenter and apocenter distances from the
focus are given by

rperi = p

1 + e
, rapo = p

1 − e
. (3.21)

The sum of these is the major axis of the ellipse, and we define the semi-major axis a to
be

a := 1

2
(rperi + rapo) = p

1 − e2
. (3.22)

The semi-latus rectum can also be expressed in terms of these quantities:

p = 2rperirapo

rperi + rapo
. (3.23)

A special case of elliptical motion occurs when e = 0. In this case r = p is constant, and
the orbit is circular.

We examine next the hyperbolic and parabolic orbits with e ≥ 1. In these cases the motion
is no longer periodic, and the notion of apocenter ceases to be meaningful. Similarly,
while we can still define a quantity a related to p := h2/(Gm) by a = p/(1 − e2), this
quantity also loses its usefulness, being negative for hyperbolic orbits and formally infinite
for parabolic orbits. The pericenter still occurs at φ = ω, with rperi = p/(1 + e), and r
approaches infinity as cos(φ − ω) → −e−1. It is easy to show that the net change between
the asymptotic angle φin

∞ of the incoming part of the orbit and the asymptotic angle φout
∞ of

the outgoing orbit is given by

�φ := φout
∞ − φin

∞ = 2 arccos(−e−1). (3.24)

This reduces to �φ = 2π when e = 1.
Returning to the general case with any e, we invoke Eqs. (3.10), (3.19), and (3.20) to

derive the following useful expressions for the radial and angular velocities of a Keplerian
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orbit:

ṙ =
√

Gm

p
e sin(φ − ω), (3.25a)

φ̇ =
√

Gm

p3

[
1 + e cos(φ − ω)

]2
. (3.25b)

From these we obtain

v2 = Gm

p

[
1 + 2e cos(φ − ω) + e2

] = Gm

(
2

r
− 1 − e2

p

)
(3.26)

for the squared orbital velocity. From Eq. (3.12) we get an expression for the total energy
E := με,

E = −Gμm
1 − e2

2p
= −Gμm

2a
. (3.27)

We recall that μ := m1m2/m is the system’s reduced mass, and that a is related to p by
Eq. (3.22). And finally, from Eq. (3.5) we have that

L = μ
√

Gmp ez (3.28)

is the system’s total angular momentum.

Motion in time; eccentric anomaly

So far we have determined the orbit as a function of φ, and the description involves three
arbitrary constants, p, e, and ω, known as orbital elements. As we have seen, the semi-
latus rectum p is a substitute for angular momentum, while the associated semi-major
axis a := p/(1 − e2) is a substitute for orbital energy. The true nature of the longitude of
pericenter ω will be revealed below.

The description of the orbit is completed by giving φ as a function of time. This can be
accomplished by integrating Eq. (3.25b), in the form of

t − T =
√

p3

Gm

∫ φ

ω

dφ′[
1 + e cos(φ′ − ω)

]2
, (3.29)

where the constant T , called the time of pericenter passage, is a fourth orbital element.
This equation can be inverted to give φ(t), and Kepler’s problem is now solved.

There remains, however, the practical problem of evaluating the integral of Eq. (3.29).
We henceforth specialize to elliptical motion, and introduce another running parameter on
the orbit, known as the eccentric anomaly u. This is defined by the relations

cos f = cos u − e

1 − e cos u
, sin f =

√
1 − e2 sin u

1 − e cos u
, (3.30)
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in which f := φ − ω is the true anomaly, the orbital angle as measured from the pericenter.
The inverted relations are

cos u = cos f + e

1 + e cos f
, sin u =

√
1 − e2 sin f

1 + e cos f
, (3.31)

and these relationships are neatly summarized by the half-angle formula

tan
1

2
f =

√
1 + e

1 − e
tan

1

2
u. (3.32)

These equations reveal that u = 0 at pericenter (where φ = ω and f = 0), that u = π at
apocenter (where f = π ), and that u = 2π at the end of a complete orbital cycle. Other
useful relations are

d f

du
=

√
1 − e2

1 − e cos u
,

du

d f
=

√
1 − e2

1 + e cos f
. (3.33)

The eccentric anomaly gives rise to a useful alternative description of the orbit. Making
the substitutions reveals that

r = a(1 − e cos u), (3.34a)

ṙ =
√

Gm

a

e sin u

1 − e cos u
, (3.34b)

u̇ =
√

Gm

a3

1

1 − e cos u
, (3.34c)

v2 = Gm

a

1 + e cos u

1 − e cos u
= Gm

(
2

r
− 1

a

)
. (3.34d)

The main advantage of this description resides in Eq. (3.34c), which can be immediately
integrated to give

t − T =
√

a3

Gm

(
u − e sin u

)
. (3.35)

This is known as Kepler’s equation, which gives t as a simple function of the eccentric
anomaly u. The equation can be inverted to yield u(t), see Box 3.1, and this can finally be
inserted within Eqs. (3.30) or (3.32) to express f as a function of time.

A description in terms of the eccentric anomaly is often a judicious choice when it is
required to integrate over time. As a simple example, we can calculate the orbital period P
of an elliptical orbit using Eq. (3.35). When u increases by 2π , t increases by P , and with
very little effort we find that

P = 2π

√
a3

Gm
. (3.36)

While the period can also be obtained directly from Eq. (3.29), the integration is far more
laborious. That P is proportional to a3/2 is Kepler’s third law of planetary motion.



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-03 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 12:22

149 3.2 Two bodies: Kepler’s problem

Box 3.1 Solving Kepler’s equation

We wish to find the eccentric anomaly u that corresponds to a given time t . For this purpose it is useful to
rewrite Kepler’s equation as

u − e sin u = M :=
√

Gm

a3
(t − T ) = 2π

t − T

P
,

and to map themean anomaly M to the interval0 ≤ M < 2π by subtracting an appropriate multiple of
P from t − T .
A time-honored method to solve Kepler’s equation is based on Newton’s root-finding method. It is an

implementation of the iterative scheme

un+1 = un + M − (un − e sin un)

1 − e cos un

untilu converges to the desired accuracy. The iterations are seeded withu0 = M , and the scheme typically
requires a small number of iterations (fewer than six or so) for machine-precision accuracy.

Constancy of the pericenter; Runge–Lenz vector

We have seen that Keplerian motion within a fixed orbital plane is characterized by four
constants of the motion, the orbital elements p, e, ω, and T . We have seen that constancy
of p is tied to conservation of angular momentum, and that constancy of a := p/(1 − e2)
is tied to conservation of energy (so that constancy of e is also assured). In addition, the
appearance of T as an integration constant was expected from the fact that the gravitational
potential Gm/r does not depend explicitly on time. Constancy of ω, however, is not related
to the spherical symmetry of the potential nor its time independence; we must seek a
deeper cause. It is worth emphasizing that constancy of ω is a very important property of
a Keplerian orbit: It ensures that the orientation of the orbit stays fixed, that the position of
the pericenter does not move, and when the orbit is bound, that the orbit retraces itself after
each orbital cycle.

The constancy of ω is the result of a hidden symmetry of Kepler’s problem, associated
with the specific 1/r nature of the gravitational potential; the symmetry does not exist for
other potentials. The symmetry gives rise to a conservation statement for the Runge–Lenz
vector, defined by

A := v × h

Gm
− n, (3.37)

in which h := r × v and n := r/r . A short computation using a = −Gmn/r2 and ṙ = n · v

shows that

d A

dt
= 0, (3.38)

and the manipulations do indeed reveal that constancy of A relies on the specific form
of the gravitational acceleration. The Runge–Lenz vector can be evaluated explicitly by
making use of the Keplerian results displayed previously, including Eqs. (3.5), (3.7), (3.9),
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and (3.25). The result is

A = e
(
cos ω ex + sin ω ey

)
, (3.39)

and it reveals that the vector points in the fixed direction of the pericenter. The vector has
a length e, and constancy of A as a vector implies that both e and ω are constants of the
motion.

3.2.5 Keplerian orbits in space

The description of Keplerian orbits given previously achieved a remarkable degree of
simplicity, thanks in part to conservation of angular momentum, which guarantees that the
motion takes place in a fixed orbital plane. The description was entirely “orbit-centric,” in
that the reference frame was selected specifically to give a simple description of the orbital
plane; and the simplicity was achieved largely by adopting the polar coordinates (r, φ)
attached to the orbital plane. In many applications this description is entirely adequate, but
in many others it is necessary to provide a fuller description that is less orbit-centric. For
example, one might wish to describe the motion of two or more planets around the Sun
(under the assumption that the Sun’s motion and inter-planet interactions are negligible),
with each planet moving in a different orbital plane; in such a case one would like to adopt
the same reference frame for all the planets. Another example, which will be explored
in some detail below, involves a two-body system perturbed by external bodies, or by a
deformation of each body from a spherical configuration; these perturbations cause the
orbital plane to move, and these motions must be described relative to a fixed reference
frame. For such applications we require a fuller description of the orbital motion in space,
relative to a reference frame that is not attached to the orbital plane.

We were already given an orbital frame with coordinates (x, y, z), such that the fixed
orbital plane coincides with the x–y plane, and such that the angular-momentum vector is
aligned with the z-direction. The orbital frame comes with the constant basis vectors ex , ey ,
and ez , as well as the time-dependent basis n, λ, and ez . We now introduce a fundamental
frame with coordinates (X, Y, Z ), and seek to describe the orbital motion in this new frame.
We adopt the X–Y plane as a reference plane in the new frame, and the Z -axis as a
reference direction. The fundamental frame comes with a constant vectorial basis eX , eY ,
and eZ . We assume that the orbital and fundamental frames share the same origin, so that
X = Y = Z = 0 when x = y = z = 0. The choice of fundamental frame is arbitrary, and
is often dictated by convention or convenience. For example, in the description of planetary
motion in the solar system, the reference plane is chosen to coincide with Earth’s own orbital
plane (called the ecliptic). As another example, in the description of satellites orbiting the
Earth, the fundamental plane is chosen to coincide with Earth’s equatorial plane. In each
case the direction of the X -axis is selected by convention.

The description of the orbital motion relative to the fundamental frame requires the
introduction of additional orbital elements. The situation is represented in Fig. 3.2, which
shows the orbital plane crossing the fundamental plane at an angle ι called the inclination;
this is the angle between the z-direction of the orbital frame and the Z -direction of the
fundamental frame. The line of intersection between the two planes is known as the line
of nodes, and the point at which the orbit cuts the fundamental plane from below is the



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-03 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 12:22

151 3.2 Two bodies: Kepler’s problem

f

ιΩ
ω

ascending node

pericenter

m1

m2

X

Y

Z

Fig. 3.2 Orbital motion viewed in the fundamental reference frame.

ascending node; the descending node is the point at which the orbit cuts the plane from
above. The angle � between the X -direction and the line of nodes is the longitude of
the ascending node. The diagram also shows ω, the longitude of pericenter introduced
previously, which is now defined specifically as the angle between the line of nodes and the
direction to the pericenter, as measured in the orbital plane. In this new description of the
orbital motion, it is conventional to align the x-axis of the orbital plane with the direction
to the pericenter, thereby deviating from our previous practice. And finally, the diagram
shows the true anomaly f , the angle between the separation vector r and the direction to
the pericenter, as measured in the orbital plane. The complete listing of orbital elements
therefore consists of the principal elements p and e, the positional elements ι, �, and ω,
and the time element T ; the total number of elements is six, and it is no accident that this
number corresponds to the number of initial conditions required to select a unique solution
to Kepler’s problem.

With these definitions and conventions, we show in Box 3.2 that the components of the
separation vector r in the fundamental (X, Y, Z ) frame are given by

r X = r
[
cos � cos(ω + f ) − cos ι sin � sin(ω + f )

]
, (3.40a)

rY = r
[
sin � cos(ω + f ) + cos ι cos � sin(ω + f )

]
, (3.40b)

r Z = r sin ι sin(ω + f ), (3.40c)

in which r = p/(1 + e cos f ). Differentiation with respect to time and involvement of
Eqs. (3.25) give us the components of the velocity vector,

vX = −
√

Gm

p

{
cos �

[
sin(ω + f ) + e sin ω

] + cos ι sin �
[
cos(ω + f ) + e cos ω

]}
,

(3.41a)

(continued overleaf)
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vY = −
√

Gm

p

{
sin �

[
sin(ω + f ) + e sin ω

] − cos ι cos �
[
cos(ω + f ) + e cos ω

]}
,

(3.41b)

svZ =
√

Gm

p
sin ι

[
cos(ω + f ) + e cos ω

]
. (3.41c)

The results of Box 3.2 also allow us to express the orbital basis vectors n and λ as

n = [
cos � cos(ω + f ) − cos ι sin � sin(ω + f )

]
eX

+ [
sin � cos(ω + f ) + cos ι cos � sin(ω + f )

]
eY

+ sin ι sin(ω + f ) eZ (3.42)

and

λ = [− cos � sin(ω + f ) − cos ι sin � cos(ω + f )
]

eX

+ [− sin � sin(ω + f ) + cos ι cos � cos(ω + f )
]

eY

+ sin ι cos(ω + f ) eZ . (3.43)

In addition, the direction to the pericenter is given by

ex = (
cos � cos ω − cos ι sin � sin ω

)
eX

+ (
sin � cos ω + cos ι cos � sin ω

)
eY

+ sin ι sin ω eZ , (3.44)

while the direction of the angular-momentum vector is

ez = sin ι sin � eX − sin ι cos � eY + cos ι eZ . (3.45)

In terms of these we have that A = eex and h = hez , with h := √
Gmp.

The description of the orbital motion in the fundamental frame allows us to provide
simple definitions for the orbital elements. We have that

p := h2

Gm
, (3.46a)

e := |A|, (3.46b)

cos ι := ez · eZ = h · eZ

h
, (3.46c)

sin ι sin � := ez · eX = h · eX

h
, (3.46d)

sin ι sin ω := ex · eZ = A · eZ

e
. (3.46e)

To this we may add a := p/(1 − e2) and the time element T , which is defined by Eq. (3.29).
These definitions are elementary and fundamental, because they are formulated directly in
terms of the fundamental vectors of the problem, the reduced angular-momentum vector
h = r × v and the Runge–Lenz vector A defined by Eq. (3.37). They will play a large role
in the next section.

cmw
Cross-Out
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Box 3.2 Orbital and fundamental frames

A close examination of Fig. 3.2 and some thought reveal that the fundamental (X, Y, Z ) frame can be ob-
tained from the orbital (x, y, z) frame by a sequence of three rotations. The first is a rotationR1 by an angle
−ω around the z-axis, to align the rotated x-axis with the line of nodes. The second is a rotation R2 by an
angle−ι around the new x-axis, to align the rotated z-axis with the final Z-axis. The third is a rotationR3 by
an angle−� around the new z-axis, to align the rotated x-axis with the final X-axis. The rotation matrices
are given by

R1 =
⎛
⎝ cos ω − sin ω 0

sin ω cos ω 0
0 0 1

⎞
⎠ , R2 =

⎛
⎝1 0 0

0 cos ι − sin ι

0 sin ι cos ι

⎞
⎠ ,

R3 =
⎛
⎝ cos � − sin � 0

sin � cos � 0
0 0 1

⎞
⎠ ,

and the overall transformation between the orbital and fundamental frames isX = R3R2R1 x, with x rep-
resenting a columnvectorwith components (x, y, z), andX a columnvectorwith components (X, Y, Z ).
The end result of the transformation is

X = (
cos � cos ω − cos ι sin � sin ω

)
x

− (
cos � sin ω + cos ι sin � cos ω

)
y

+ (
sin ι sin �

)
z,

Y = (
sin � cos ω + cos ι cos � sin ω

)
x

− (
sin � sin ω − cos ι cos � cos ω

)
y

− (
sin ι cos �

)
z,

Z = (
sin ι sin ω

)
x + (

sin ι cos ω
)
y + (

cos ι
)
z.

The components of r displayed in Eqs. (3.40) follow from these results by inserting x = r cos f ,
y = r sin f , and z = 0.
From the coordinate transformation we can easily obtain the old basis vectors in terms of the new:

ex = ∂x

∂x
= (

cos � cos ω − cos ι sin � sin ω
)
eX

+ (
sin � cos ω + cos ι cos � sin ω

)
eY

+ (
sin ι sin ω

)
eZ ,

ey = ∂x

∂y
= −(

cos � sin ω + cos ι sin � cos ω
)
eX

− (
sin � sin ω − cos ι cos � cos ω

)
eY

+ (
sin ι cos ω

)
eZ ,

ez = ∂x

∂z
= (

sin ι sin �
)
eX − (

sin ι cos �
)
eY + (

cos ι
)
eZ ,

in which the position vector x is expressed as x = X eX + Y eY + Z eZ .
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The orbital vectors of Eqs. (3.42) and (3.43) are obtained by inserting these results within the relations
n = cos f ex + sin f ey and λ = − sin f ex + cos f ey , which are inherited from Eqs. (3.7);
the new relations reflect the change of convention regarding the choice of x -direction.

3.3 Perturbed Kepler problem

We saw in the preceding section that the motion of two spherical bodies under their mutual
gravitational attraction can be solved exactly and completely. As we shall see in Sec. 3.5, the
same cannot be said of the three-body problem, and in general, the N -body problem does not
admit an exact solution. Many situations of interest, however, involve more than two bodies.
The Sun–Earth–Moon system is an extremely pertinent example, and the motion of any
planet around the Sun is affected by the massive presence of Jupiter. While these systems
cannot be given an exact description, we can nevertheless make progress by appealing to the
fact that in many applications, the additional bodies have only a small effect on the orbital
motion of a two-body system. In the Sun–Earth–Moon system, the dominant interaction is
between the Sun and the Earth, and the gravitational effects of the Moon on Earth’s orbital
motion are small. Similarly, while Jupiter is indeed a massive body, it is sufficiently far
from the other planets that its gravity has a small effect on them. The approximate analysis
of small external influences on a system dominated by an internal interaction is the realm
of perturbation theory, and in this section we formulate a perturbation theory for Kepler’s
problem.

3.3.1 Perturbing force

We return to the two-body problem of Sec. 3.2, but now suppose that the relative acceleration
a := a1 − a2 between bodies is given by

a = −Gm

r2
n + f , (3.47)

in which m := m1 + m2, r := r1 − r2, r := |r|, n := r/r , and where f is a perturbing
force per unit mass, which may depend on r , v := v1 − v2, and time. The presence of the
perturbing force implies that the Keplerian motion reviewed in Sec. 3.2 is no a longer a
solution to the equations of motion. As a consequence we can no longer expect h := r × v

to be a constant vector, the orbit to be elliptical, the pericenter to stay in a fixed position,
and so on. But with f assumed to be small, we would expect the Keplerian description to
remain approximately true. Our main goal is to find a useful way of describing the small
deviations from Keplerian motion produced by the perturbing force. Below we shall follow
the convention from celestial mechanics, and refer to f as a perturbing force, in spite of
the fact that it is really a force per unit mass.
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It is helpful to introduce, as we did previously, a vectorial basis adapted to the orbital
motion of the two bodies. The first member of the basis will be n, which is already singled
out in Eq. (3.47). The third member will be ez := h/h, which is necessarily orthogonal to
n; this vector can no longer be assumed to be a constant vector. The second member of
the basis is then λ, which is defined to be orthogonal to both n and ez . We take the triad
of vectors (n,λ, ez) to form a right-handed basis. When f = 0 the vector basis reduces
to the one introduced back in Sec. 3.2, but the bases are quite distinct in the presence of
a perturbing force; for reasons that will become clear later, we perversely adopt the same
notation in spite of this important distinction.

The vectorial basis can be used to decompose any vector relevant to the description of
the perturbed orbital motion. Examples are

r = r n, (3.48a)

v = ṙ n + v⊥ λ, (3.48b)

h = h ez, (3.48c)

in which ṙ := v · n and v⊥ := v · λ; it is easy to verify that h = rv⊥. Another example is
the perturbing force, which is decomposed as

f = R n + S λ + W ez, (3.49)

in terms of components R, S , and W . Yet another example is the Runge–Lenz vector

A := v × h

Gm
− n = A ex , ex = cos α n − sin α λ, (3.50)

which is given a component A cos α along n, and a component −A sin α along λ; there is no
component along ez because A is orthogonal to h. Here we have defined the Runge–Lenz
vector exactly as in Sec. 3.2, but we can no longer expect A to be a constant vector. We
have given the vector a length A, and Eq. (3.50) serves as a definition for the unit vector ex ,
which is also not a constant vector. In an unperturbed situation A would be equal to e, α

would be equal to the true anomaly f , and ex would indeed be a constant vector; but none
of these statements can be expected to hold when f �= 0.

The effect of the perturbing force f on the vectors h and A can be calculated by appealing
directly to their definitions. We find that

dh

dt
= r × f = −rW λ + rS ez (3.51)

and

Gm
d A

dt
= f × h + v × (r × f ) = 2hS n − (

hR + rṙS
)
λ − rṙW ez . (3.52)

These equations imply that

dh

dt
= rS (3.53)

and

Gm
d A

dt
= h sin αR + (

2h cos α + rṙ sin α
)
S, (3.54)
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as well as

h
dez

dt
= −rW λ (3.55)

and

Gm A
dex

dt
= −[

h cos αR + (−2h sin α + rṙ cos α)S
](

sin α n + cos α λ
) − rṙW ez .

(3.56)
These equations tell us, for example, that S produces a change in the magnitude of the
angular-momentum vector, while W produces a change in its direction. Similarly, both R
and S produce a change in A’s magnitude, as well as a change of direction orthogonal to
ez .

3.3.2 Osculating orbits

How are we to solve Eq. (3.47)? A direct approach, of course, is always possible: one inserts
the given expression for the external force and integrates the second-order differential
equations directly, either by analytical methods when the problem is sufficiently simple (a
rare occasion), or by numerical methods. The approach provides an answer, but very little
insight into the effects of the perturbation on various key aspects of the orbit. We shall favor
instead a clever reformulation of the perturbed problem that was initially devised by Euler
and Lagrange. This reformulation, known as the method of osculating orbital elements,
is an application to orbital dynamics of the well-known method of variation of arbitrary
constants to integrate differential equations (reviewed in Box 3.3).

Box 3.3 Variation of arbitrary constants

The method of variation of arbitrary constants to integrate differential equations is best introduced by
examining a simple example. Consider a simple harmonic oscillator of unit frequency driven by an external
force f (t). The system is described by the differential equation

ẍ + x = f, (1)

in which x is the displacement from equilibrium, and an overdot indicates differentiation with respect to t . To
integrate this equation we begin with the general solution to the homogeneous problem, ẍ + x = 0. This
solution can be expressed as

x(t) = x0 cos t + v0 sin t, (2)

in which x0 := x(t = 0) and v0 := ẋ(t = 0) are the arbitrary constants of the solution. This solution
also gives us

ẋ(t) = v0 cos t − x0 sin t. (3)

Returning to the original differential equation with a driving force f (t), we declare that Eqs. (2) and (3) shall
also be a solution to Eq. (1), and evade the obvious contradiction by allowing x0 andv0 to become functions of
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time. Equation (3)will be compatiblewith Eq. (2) provided that ẋ0 cos t + v̇0 sin t = 0, and substitution
of Eqs. (2) and (3) within Eq. (1) yields−ẋ0 sin t + v̇0 cos t = f . Solving for ẋ0 and v̇0, we find that

ẋ0 = − f sin t, v̇0 = f cos t, (4)

and these equations now replace Eq. (1). The solutions are to be insertedwithin Eqs. (2) and (3) for a complete
solution of the original problem.
These steps define the method of variation of arbitrary constants. One begins with the general solution

to a homogeneous differential equation, with the appropriate number of arbitrary constants. One next solves
the inhomogeneous problem by formally adopting the functional form of the homogeneous solution, and
promoting the arbitrary constants to new variables. After some manipulations, the original problem acquires
a new formulation as a set of first-order differential equations for the new variables.

Themethod

The starting point of the method of osculating orbital elements is to recall that the general
solution to the unperturbed Kepler problem can be expressed as

r(t) = rKepler(t, μ
a), v(t) = vKepler(t, μ

a), (3.57)

where rKepler and vKepler are the functional forms displayed in Eqs. (3.40) and (3.41), with
μa denoting a collection of six constants of the motion, which we take to be the orbital
elements (p, e, ι, �, ω, T ). These vectors satisfy the differential equations

d rKepler

dt
= vKepler,

dvKepler

dt
= −Gm

rKepler

r3
Kepler

, (3.58)

which define the unperturbed Kepler problem.
The vectors rKepler and vKepler can also provide a solution to the perturbed problem if we let

the orbital elements μa become functions of time: μa → μa(t). The original mathematical
problem expressed by Eq. (3.47) can then be formulated as a set of first-order differential
equations for μa , and the solutions to these are to be inserted within Eqs. (3.57) to obtain a
complete solution to the perturbed problem. The meaning of the method is that at any time
t1, the orbit is taken to be a Keplerian orbit with orbital elements μa(t1) that refer to this
time only; at another time t2 the orbit will still be Keplerian, but the orbital elements will
have evolved to new values μa(t2). Another way of describing this is to say that at any time
t1, there exists a Keplerian orbit with elements μa(t1) that is tangent to the perturbed orbit
at that time; this is the osculating orbit, the term originating in the Latin word osculatio,
which means “to kiss.”

We shall therefore express the solution to Eq. (3.47) as

r(t) = rKepler
(
t, μa(t)

)
, v(t) = vKepler

(
t, μa(t)

)
, (3.59)

with rKepler and vKepler still standing for the functional forms of Eqs. (3.40) and (3.41), but
with the orbital elements μa now allowed to be functions of time. Differentiating r with
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respect to time gives

d r

dt
= ∂ rKepler

∂t
+

∑
a

∂ rKepler

∂μa

dμa

dt
. (3.60)

The left-hand side is v, and the first term on the right-hand side is vKepler, because rKepler is
differentiated with respect to t while keeping the orbital elements constant, thereby defining
Keplerian motion. The equation is compatible with Eq. (3.59) provided that∑

a

∂ rKepler

∂μa

dμa

dt
= 0, (3.61)

and we have obtained our first osculating condition. Similarly, differentiating v with respect
to t gives

dv

dt
= ∂vKepler

∂t
+

∑
a

∂vKepler

∂μa

dμa

dt
. (3.62)

The left-hand side is a = aKepler + f , and the first term on the right-hand side is the
Keplerian acceleration aKepler. The second osculating condition is∑

a

∂vKepler

∂μa

dμa

dt
= f , (3.63)

and these equations can be solved for dμa/dt .

Osculating equations

The purpose of the foregoing discussion was primarily to describe the conceptual aspects of
the method of osculating orbital elements. While Eqs. (3.61) and (3.63) could in principle
be solved for dμa/dt in terms of the perturbing force, it is easier in practice to obtain
dμa/dt directly from the definitions of the orbital elements displayed in Eqs. (3.46). The
orbital elements are given explicitly in terms of the fixed vectorial basis (eX , eY , eZ ), as well
as the angular-momentum vector h and the Runge–Lenz vector A, which change according
to Eqs. (3.51)–(3.56). The method authorizes us to substitute Keplerian relations on the
right-hand side of these equations, so that h is at all times equal to

√
Gmp(t), A is at all

times equal to e(t), α is at all times equal to the true anomaly f , r is at all times equal to
p/(1 + e cos f ), and ṙ is at all times equal to (Gm/p)1/2e sin f .

By following this approach we quickly arrive at

dp

dt
= 2

√
p3

Gm

1

1 + e cos f
S, (3.64a)

de

dt
=

√
p

Gm

[
sin f R + 2 cos f + e(1 + cos2 f )

1 + e cos f
S

]
, (3.64b)

dι

dt
=

√
p

Gm

cos(ω + f )

1 + e cos f
W, (3.64c)

sin ι
d�

dt
=

√
p

Gm

sin(ω + f )

1 + e cos f
W, (3.64d)

(continued overleaf)
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159 3.3 Perturbed Kepler problem

dω

dt
= 1

e

√
p

Gm

[
− cos f R + 2 + e cos f

1 + e cos f
sin f S − e cot ι

sin(ω + f )

1 + e cos f
W

]
,

(3.64e)

a listing of equations that govern the behavior of the osculating orbital elements. To these
we can add

da

dt
= 2

√
a3

Gm
(1 − e2)−1/2

[
e sin f R + (1 + e cos f )S

]
, (3.65)

in case a := p/(1 − e2) is preferred over p in the selection of orbital elements. Note that p
and e (or a and e) are affected only by components of f in the orbital plane, while � and
ι are affected only by the component out of the plane. All components of the perturbing
force affect ω.

We are missing an equation for the variation of T , the time of pericenter passage, which
determines the true anomaly f via Eq. (3.29). It is more practical, however, to close the
system of equations by providing an expression for d f/dt , from which the true anomaly
can be obtained directly. Because f is the angle between the (varying) pericenter and the
position vector r , we have that cos f = r · ex/r , and this can immediately be differentiated
with respect to time. In this we insert Eq. (3.56) for dex/dt , the usual Keplerian relations
for d r/dt , and we obtain

d f

dt
=

√
Gm

p3
(1 + e cos f )2 + 1

e

√
p

Gm

[
cos f R − 2 + e cos f

1 + e cos f
sin f S

]
(3.66)

after some simplification. The result can also be expressed as

d f

dt
=

(
d f

dt

)
Kepler

−
(

dω

dt
+ cos ι

d�

dt

)
, (3.67)

which shows that d f/dt differs from the usual Keplerian expression by a term dω/dt +
cos ι d�/dt which possesses a direct geometrical meaning. We recall that ω is the angle
from the (varying) pericenter to the (varying) line of nodes, as measured in the orbital
plane, while � is the angle from the line of nodes to the (fixed) X -direction, as measured in
the reference X–Y plane. The combination dω + cos ι d� can then be seen to describe the
change in the direction to the pericenter relative to the X -direction, as measured entirely
in the orbital plane. The non-Keplerian terms in Eqs. (3.66) and (3.67) therefore appear
because the true anomaly f is measured relative to a varying set of directions.

The relevance of the combination dω + cos ι d� can also be inferred from Eq. (3.56),
which gives the rate of change of the direction to the pericenter. After inserting the appro-
priate Keplerian relations in this expression, we find that

dex

dt
=

(
dω

dt
+ cos ι

d�

dt

)(
sin f n + cos f λ

) +
(

sin ω
dι

dt
− sin ι cos �

d�

dt

)
ez, (3.68)

which reveals that dω + cos ι d� does indeed describe the change of ex within the orbital
plane, while sin ω dι − sin ι cos � d� describes the change in the orthogonal direction.



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-03 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 12:22

160 Newtonian orbital dynamics

First-order approximation

The formalism of osculating orbital elements, in the formulation of Eqs. (3.64) and (3.66),
is exactly equivalent to the original formulation of the equations of motion in Eq. (3.47); no
approximations have been introduced in the transcription. The usefulness of the formalism,
however, is most immediate when the perturbing force is small, so that the changes in the
orbital elements are small. In such a context one can achieve a very good approximation of
the orbital dynamics by inserting the constant, zeroth-order values on the right-hand side
of the equations, and integrating with respect to t to get the first-order changes. In such
applications it can be convenient to use f as independent variable instead of t , and in this
approximate context one can neglect the non-Keplerian terms on the right-hand side of
Eq. (3.66). The system of osculating equations becomes

dp

d f
� 2

p3

Gm

1

(1 + e cos f )3
S, (3.69a)

de

d f
� p2

Gm

[
sin f

(1 + e cos f )2
R + 2 cos f + e(1 + cos2 f )

(1 + e cos f )3
S

]
, (3.69b)

dι

d f
� p2

Gm

cos(ω + f )

(1 + e cos f )3
W, (3.69c)

sin ι
d�

d f
� p2

Gm

sin(ω + f )

(1 + e cos f )3
W, (3.69d)

dω

d f
� 1

e

p2

Gm

[
− cos f

(1 + e cos f )2
R + 2 + e cos f

(1 + e cos f )3
sin f S

− e cot ι
sin(ω + f )

(1 + e cos f )3
W

]
, (3.69e)

with

dt

d f
�

√
p3

Gm

1

(1 + e cos f )2

×
{

1 − 1

e

p2

Gm

[
cos f

(1 + e cos f )2
R − 2 + e cos f

(1 + e cos f )3
sin f S

]}
(3.70)

providing the temporal information.
In most applications of the formalism it is found that the orbital elements undergo two

types of changes. The first is an oscillation with a period equal to the orbital period P (or
multiples of P), as given by Eq. (3.36); such changes are typically uninteresting. The second
type is a steady drift that does not average out after a few orbital cycles; such changes,
which are known as secular changes, are typically much more interesting, because they
accumulate over time and eventually lead to large departures from the initial Keplerian
orbit. The secular change of an orbital element μa over a complete orbit is given by

�μa =
∫ P

0

dμa

dt
dt =

∫ 2π

0

dμa

d f
d f, (3.71)
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and division by the orbital period P gives a notion of average, or secular, time derivative:(
dμa

dt

)
sec

:= �μa

P
. (3.72)

The integrations are best carried out in the form involving the true anomaly f , but the
factors of 1 + e cos f in the denominator can sometimes produce integrals that are difficult
to evaluate. When such a situation is encountered, it is usually advantageous to make a
change of variables from f to the eccentric anomaly u, as defined by Eqs. (3.30)–(3.33).

3.4 Case studies of perturbed Keplerianmotion

Our purpose in this section is to explore some of the non-Keplerian aspects of celestial
mechanics by working through a number of examples that are of real relevance to the solar
system. We shall investigate these effects by exploiting the method of osculating orbital
elements introduced in the preceding section.

3.4.1 Perturbations by a third body

We first examine a two-body system, such as the Sun–Mercury system, perturbed by a
remote third body such as Jupiter. This is an example of a three-body problem, and we
shall have occasion in Sec. 3.5 to give this problem a more complete treatment. Here we
provide an approximate discussion, relying on the fact that the third body is remote, so that
its gravitational influence on the two-body system is weak. This influence can be described
as a perturbation, and its effects can be investigated by means of the method of osculating
orbits.

To set up the problem we recall that the two-body system involves a mass m1 at position
r1 and a mass m2 at position r2. The third body has a mass m3 and a position r3. As usual
we let m := m1 + m2, r := r1 − r2, and we also introduce R := r3 − r2; note that R no
longer stands for the position of the two-body pericenter. We also have r := |r|, R := |R|,
n := r/r , and N := R/R. We assume that R � r .

From Eq. (1.202) we find that the acceleration of the first body is given by

a1 = −Gm2
n

r2
− Gm3

r − R

|r − R|3 , (3.73)

while

a2 = Gm1
n

r2
+ Gm3

N

R2
(3.74)

is the acceleration of the second body. The relative acceleration is a := a1 − a2, and removal
of the Keplerian term gives us the perturbing force

f = −Gm3

(
r − R

|r − R|3 + N

R2

)
. (3.75)
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Taking into account the assumption that R is large compared with r , we simplify this
expression by expanding in powers of r/R, and obtain, to leading order,

f = −Gm3r

R3

[
n − 3(n · N)N + O(r/R)

]
. (3.76)

We see that the ratio of f to the Keplerian acceleration is of order (m3/m)(r/R)3, and
therefore small by virtue of our assumption that R � r . The components of the perturbing
force in the Keplerian basis (n,λ, ez) are

R := f · n = −Gm3r

R3

[
1 − 3(n · N)2

]
, (3.77a)

[−2pt]S := f · λ = 3
Gm3r

R3
(n · N)(λ · N), (3.77b)

W := f · ez = 3
Gm3r

R3
(n · N)(ez · N), (3.77c)

and these can immediately be inserted within the equations that govern the evolution of the
osculating orbital elements.

The expressions for R, S , and W refer to any two-body system perturbed by a remote
third body, but to proceed we consider the specific situation mentioned previously: We
examine the orbit of a planet like Mercury around the Sun, perturbed by an outer planet
such as Jupiter. For simplicity we assume that Mercury and Jupiter move in the same orbital
plane (when in reality they have a relative inclination of approximately 6 degrees), and we
align the reference X–Y plane with this common orbital plane; this implies that ι = 0, and
since � is not defined, it may be set equal to zero. Again for simplicity, we assume that
Jupiter moves on a circular orbit (a good approximation), with a constant radius R and
angular frequency �3 =

√
G(m2 + m3)/R3. Its true anomaly is given by F = �3t , and it

changes very little in the course of a complete Mercury orbit; we have that

�F := �3 P = 2π

(
m2 + m3

m1 + m2

)1/2( a

R

)3/2

� 1, (3.78)

with P denoting Mercury’s orbital period, and a := p/(1 − e2) its semi-major axis. The
direction to Jupiter is

N = cos F eX + sin F eY , (3.79)

and Eqs. (3.42), (3.43), and (3.45) reveal that

n = cos( f + ω) eX + sin( f + ω) eY , (3.80a)

λ = − sin( f + ω) eX + cos( f + ω) eY , (3.80b)

and ez = eZ . From these expressions we find that n · N = cos( f + ω − F), λ · N =
− sin( f + ω − F), ez · N = 0, and the components of the perturbing force become

R = −Gm3r

R3

[
1 − 3 cos2( f + ω − F)

]
, (3.81a)

S = −3
Gm3r

R3
sin( f + ω − F) cos( f + ω − F), (3.81b)

W = 0, (3.81c)

in which we may substitute r = p/(1 + e cos f ).

cmw
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Mercury’s orbital evolution in response to Jupiter’s perturbation is governed by
Eqs. (3.64). As we explained near the end of Sec. 3.3.2, we are primarily interested in the
secular variation of the orbital elements p, e, and ω, as calculated according to Eq. (3.71)
using the equations listed in Eq. (3.69). The integrals over f are easily evaluated by adopt-
ing the eccentric anomaly u as an integration variable, and by assuming that F is constant
over Mercury’s orbital cycle – refer to Eq. (3.78). After some manipulations we arrive at

�p := −15π
m3 p4

m R3
e2(1 − e2)−7/2 sin 2(ω − F), (3.82a)

�e := 15π

2

m3 p3

m R3
e(1 − e2)−5/2 sin 2(ω − F), (3.82b)

�ω := 3π

2

m3 p3

m R3
(1 − e2)−5/2

[
1 + 5 cos 2(ω − F)

]
(3.82c)

for the net change in the orbital elements after a complete Mercury orbit. From these
results it can be inferred that �a = 0: Mercury does not undergo a secular variation of its
semi-major axis, and the change in p = a(1 − e2) simply reflects a change in eccentricity.

These expressions reveal that depending on Jupiter’s position on its orbit, Mercury’s
eccentricity e and longitude of perihelion ω either increase or decrease in the course of a
complete orbit. After an extremely long time, much longer than Jupiter’s own orbital period,
the change in e will average out, but Mercury’s perihelion will advance at an average rate
of

〈�ω〉 = 3π

2

m3

m

(
p

R

)3

(1 − e2)−5/2 = 3π

2

m3

m

(
a

R

)3

(1 − e2)1/2 (3.83)

per orbit.
Inserting the numerical values for Mercury and Jupiter from Table 3.2, we find that

〈�ω〉 = 1.79 × 10−6 radians per orbit; the smallness of this effect provides ample justifi-
cation for a calculation limited to first-order perturbation theory. It is customary to express
the perihelion advance as a rate in units of arcseconds (as) per century. To achieve this
conversion we use the fact that 1 rad = 2.063 × 105 as, and take into account the fact that
Mercury’s orbital period is P = 0.2408 yr; we obtain 〈(dω/dt)sec〉 = 154 as/century. This
is very close to the accurately computed value of 153.6 as/century displayed in Table 3.1.
The accuracy, however, would not be as good if we applied Eq. (3.83) to the perturbation
produced by Earth’s gravitational attraction; here we would get 69.2 as/century, quite a
difference from the accurate value of 90 as/century. The reason for this lack of success is
that r/R � 0.38 for the Earth, so that an accurate computation of the perihelion advance
requires higher-order terms in the expansion of the perturbing force in powers of r/R. In
addition, the approximation formulated in Eq. (3.78) is not so good in the case of the Earth,
because Earth’s period is only four times longer than Mercury’s (instead of forty times
longer for Jupiter). Nevertheless, the method of osculating orbital elements would allow
us to incorporate such details systematically in a straightforward manner, leading to the
accurately calculated planetary perturbations listed in Table 3.1.

As we have seen in Sec. 3.1, the sum total of the contributions from all the planets to
Mercury’s perihelion advance does not account for the observed effect. The discrepancy,
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Table 3.2 Orbital elements of selected planets. The astronomical unit (AU) is the Earth–Sun distance, equal
to 149.60 × 106 km. The inclination is measured in degrees, minutes of arc, and seconds of arc. The inverse

mass is measured in units of the inverse solar mass, with M� = 1.9889 × 1030 kg.

Semi-major Orbital Inclination Inverse
axis period to ecliptic mass

Planet (AU) (yr) Eccentricity ◦ · ′·′′ 1/M� = 1

Mercury 0.387099 0.24085 0.205628 7.0.15 6010000
Venus 0.723332 0.61521 0.006787 3.23.40 408400
Earth 1.000000 1.00004 0.016722 0.0.0 328910
Mars 1.523691 1.88089 0.093377 1.51.0 3098500
Jupiter 5.202803 11.86223 0.04845 1.18.17 1047.39
Saturn 9.53884 29.4577 0.05565 2.29.22 3498.5

the famous 43 as/century, is accounted for by relativistic corrections to the equations of
motion, which can be incorporated as additional contributions to the perturbing force. We
will return to this question in Chapter 10.

3.4.2 The Kozai mechanism

In 1962, the Soviet dynamicist Michael Lidov and the Japanese astronomer Yoshihide
Kozai independently discovered a remarkable phenomenon that occurs when an object
orbits a massive body under the perturbing influence of a distant body, when the two orbits
are inclined relative to each other. As a result of the perturbed dynamics, there is a periodic
exchange between the orbital eccentricity and inclination, such that when one increases, the
other decreases. This effect, known as the Kozai mechanism, has important implications
for the behavior of asteroids, satellites of planets, extrasolar planets, and multiple-star
systems.

To study this effect we re-examine the situation of the previous section, but now allow
the orbiting body (m1) to have an inclination ι relative to the orbit of the perturbing body
(m3), which is placed in the reference X–Y plane. For simplicity we take the perturbing
body to move on a circular orbit, and we choose the line of nodes of the inclined orbit to
be situated at � = 0. The components of the perturbing force are still given by Eqs. (3.77),
but the orbital basis vectors are now

n = cos(ω + f ) eX + cos ι sin(ω + f ) eY + sin ι sin(ω + f ) eZ , (3.84a)

λ = − sin(ω + f ) eX + cos ι cos(ω + f ) eY + sin ι cos(ω + f ) eZ , (3.84b)

ez = − sin ι eY + cos ι eZ ; (3.84c)

the direction to the perturbed body is still given by Eq. (3.79). We calculate the secular vari-
ation of the orbital elements a, e, ω, and ι by inserting these expressions withinEqs. (3.69),

cmw
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integrating over a complete orbital cycle, and averaging over the position of the perturbing
body. The final results are

〈�a〉 = 0, (3.85a)

〈�e〉 = 15π

2

m3

m

(
a

R

)3

e(1 − e2)1/2 sin2 ι sin ω cos ω, (3.85b)

〈�ω〉 = 3π

2

m3

m

(
a

R

)3

(1 − e2)−1/2
[
5 cos2 ι sin2 ω + (1 − e2)(5 cos2 ω − 3)

]
, (3.85c)

〈�ι〉 = −15π

2

m3

m

(
a

R

)3

e2(1 − e2)−1/2 sin ι cos ι sin ω cos ω. (3.85d)

From Eqs. (3.85b) and (3.85d) we notice that e(1 − e2)−1〈�e〉 + tan ι〈�ι〉 = 0, which leads
to the remarkable conservation law,√

1 − e2 cos ι = constant (over long time scales). (3.86)

This is actually the consequence of angular-momentum conservation. The component of
the total angular-momentum vector normal to the orbital plane of the perturbing body is
L Z = L1+2

Z + L3
Z , and if we assume that L3

Z is separately conserved (thereby ignoring the
gravitational effects of m1 and m2 on the perturbing body), we find that L1+2

Z = μh · eZ =
μ

√
Gmp cos ι must be conserved. Because a := p/(1 − e2) does not vary over long time

scales, conservation of angular momentum implies that (1 − e2)1/2 cos ι cannot vary, in
agreement with our previous statement.

When the longitude of pericenter ω lies in the first or third quadrants, we see from
Eqs. (3.85) that the eccentricity increases while the inclination decreases; when ω lies
instead in the second or fourth quadrants, the eccentricity decreases while the inclination
increases. The equations also reveal that as long as cos2 ι/(1 − e2) > 3/5, ω increases
monotonically, on the same time scale as the variations in e and ι. For orbits with sufficiently
low inclinations, therefore, there is a periodic exchange between eccentricity and inclination
as the pericenter keeps on advancing.

For high-inclination orbits, such that cos2 ι/(1 − e2) < 3/5, the orbital evolution is very
different. In this case, ω approaches a critical angle ωc such that 〈�ω〉 = 0, and the motion
of the pericenter ceases; the critical angle is determined by

cos2 ωc = 3(1 − e2) − 5 cos2 ι

5(1 − e2 − cos2 ι)
. (3.87)

Meanwhile, if e is initially in an increasing phase and ι in a decreasing phase, the ratio
cos2 ι/(1 − e2) will be driven toward the limiting value of 3/5, and ω will settle to a final
value of ωc = π

2 or ωc = 3π
2 . The final outcome is a stationary solution of the perturba-

tion equations with 〈�e〉 = 〈�ι〉 = 〈�ω〉 = 0, occurring at critical values ec, ιc, and ωc

constrained by

ωc = π

2
or

3π

2
,

cos2 ιc

1 − e2
c

= 3

5
. (3.88)
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This equilibrium is stable; it can be shown that a perturbation away from equilibrium leads
to oscillations of e, ι, and ω about their critical values, with a period

PKozai = 2

3
√

15

m

m3

(
R

a

)3 1

ec sin ιc
P, (3.89)

where P is the period of the orbiting body. This stationary solution is called the Kozai
resonance. You will be asked to verify these statements in Exercise 3.7.

The Kozai mechanism can have important consequences: as the orbital eccentricity
increases, the orbiting body can pass sufficiently close to the inner regions of the system
at pericenter to interact with other bodies there, or even be tidally captured or disrupted by
the central body. Conversely, the body could find itself sufficiently far away at apocenter to
interact with more distant objects and be ejected from the system. This mechanism accounts
for many observed features of the asteroid belts, of minor satellites of Jupiter, and of objects
within the Kuiper belt. As an example, many high-eccentricity comets are found to be in
Kozai resonances, with their longitude of pericenter in the vicinity of π

2 or 3π
2 .

3.4.3 Effects of oblateness

As our next case study we examine a two-body system perturbed by the oblateness of
one of its members. As we saw back in Sec. 2.3, the oblateness is most often due to
rotational flattening, and here the deformed body is taken to have an axisymmetric shape;
the deformation from spherical symmetry is measured by its quadrupole moment, and we
neglect the gravitational influence of higher-order multipole moments. Examples of such
systems abound. We could be dealing with Mercury orbiting an oblate, rotating Sun, or an
artificial satellite orbiting the Earth, or else a neutron star orbiting a rotating, normal star.

The equations of motion for such a system were worked out back in Sec. 1.6.7, and
according to Eq. (1.227), the perturbing force is given by

f = 3

2
J2

Gm R2

r4

{[
5(e · n)2 − 1

]
n − 2(e · n)e

}
, (3.90)

with J2 denoting the dimensionless quadrupole moment of the deformed body, R its radius,
and the unit vector e indicating the direction of the symmetry axis. As usual we have
m := m1 + m2, r := r1 − r2, r := |r|, and n := r/r . In Eq. (3.90) we specifically identify
the oblate body with m2, and m1 is assumed to be spherical; a swap of identities involves
changing the sign of n, and therefore the sign of the perturbing force.

We choose the reference X–Y plane to be orthogonal to the symmetry axis of m2, so that e
is aligned with the Z -direction. The orbital plane has an inclination ι relative to the reference
plane, and the orbital basis is given by Eqs. (3.42)–(3.45). According to these equations,
e · n = sin ι sin(ω + f ), e · λ = sin ι cos(ω + f ), e · ez = cos ι, and the components of the
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perturbing force in the orbital basis are

R = 3

2
J2

Gm R2

r4

[
3 sin2 ι sin2(ω + f ) − 1

]
, (3.91a)

S = −3J2
Gm R2

r4
sin2 ι sin(ω + f ) cos(ω + f ), (3.91b)

W = −3J2
Gm R2

r4
sin ι cos ι sin(ω + f ), (3.91c)

with r = p/(1 + e cos f ).
We calculate the secular variation of the orbital elements p, e, ι, ω, and � by inserting

these expressions within Eqs. (3.69), and integrating over a complete orbital cycle. (In this
case there is no need to involve the eccentric anomaly u in the evaluation of the integrals;
the factor of r−4 in the perturbing force ensures that there are no remaining factors of
1 + e cos f in the denominators, and all integrations are elementary.) The end results
are

�p = 0, (3.92a)

�e = 0, (3.92b)

�ι = 0, (3.92c)

�ω = 6π J2

(
R

p

)2(
1 − 5

4
sin2 ι

)
, (3.92d)

�� = −3π J2

(
R

p

)2

cos ι. (3.92e)

The first two equations imply that �a = 0; there is no secular change in the eccentricity,
no secular change in the semi-major axis, and no secular change in the inclination. There
are, however, secular changes in the line of nodes (measured by ��) and in the pericenter
(measured relative to the line of nodes by �ω). The last two equations imply

�ω + cos ι �� = 3π J2

(
R

p

)2(
1 − 3

2
sin2 ι

)
; (3.93)

as we saw back in Sec. 3.3.2, this is the pericenter advance relative to the reference X -
direction, as measured in the orbital plane. At zero inclination, when e · n = 0, the changes
are produced by the r−4 modification to the gravitational acceleration, which is still directed
along n. For inclined orbits, the angular dependence of the perturbing force produces an
additional contribution. An associated effect is a precession of the angular-momentum
vector h around the symmetry axis e, which produces a rotation of the line of nodes. The
precession is predicted by Eq. (3.51), which becomes

dh

dt
= 3J2

Gm R2

r3
(e · n)(e × n) (3.94)

in the case of the perturbing force of Eq. (3.90). This describes a precession because h
does not change on a secular time scale, and because e · h stays constant during the orbital
evolution.
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For Mercury, the perihelion advance induced by the Sun’s oblateness is negligible.
Inserting the relevant orbital elements and the value (J2)� = 2.2 × 10−7, we obtain
(dω/dt)sec + cos ι(d�/dt)sec = 0.03 as/century, which is just below the observational
uncertainties assigned to the measurement of the advance (refer to Table 3.1). The conclu-
sion relies on a reliable determination of the Sun’s oblateness, something that was difficult
to come by. In fact, it is extremely difficult to measure the Sun’s J2 directly, because at
planetary distances, its effects are just too small to be measured. The best way to obtain
a reliable estimate would be to send a spacecraft to a low solar orbit, well inside the orbit
of Mercury, and to measure precisely how J2 affects its orbit; but despite a number of
proposals for such a mission over the years, none has yet come to pass.

During the 1960s, Robert Dicke and Mark Goldenberg attempted to determine J2 by
measuring the Sun’s visual shape. Because the surface of the Sun is an equipotential (recall
the discussion in Sec. 2.3.1), its shape is affected by J2 in a way that can be directly related
to the deformation of the external gravitational field. The shape was measured by inserting
a circular, opaque disk in front of a telescopic image of the Sun, leaving only a thin visible
ring at the edge of the Sun, and measuring the difference in brightness of the visible ring
between the equator and pole of the Sun. If the Sun were oblate, the ring at the equator
should extend further beyond the occulting disk, and should therefore be brighter. But
many factors had to be corrected for, including the effects of atmospheric distortion on
the observed shape of the Sun, and the effects of possible temperature differences between
the polar and equatorial regions of the Sun, which would lead to brightness differences
not associated with the shape. Dicke and Goldenberg claimed to have measured a J2 of
the order of 2.5 × 10−5, over 100 times larger than the currently accepted value. Dicke
postulated that such a large oblateness would occur if the core of the Sun were rotating
much faster than its outer layers, thereby generating more centrifugal flattening than would
be expected on the basis of the observed surface rotation alone.

A value of J2 this large would mean that solar oblateness contributes as much as 4
as/century to Mercury’s perihelion advance, which would destroy the agreement of the
measured advance with the prediction of general relativity. But it would have supported
the scalar-tensor theory of gravity (to be presented in Chapter 13) that Dicke himself had
developed with Carl Brans, whose prediction for the relativistic part of the advance could be
fit to 39 as/century by tuning a coupling constant. (The flexibility to tune the Brans–Dicke
parameter to obtain this low value was short lived; accurate observations of the relativistic
light deflection eventually constrained the coupling constant to such an extent that the
Brans–Dicke prediction for the perihelion advance of Mercury became only marginally
different from Einstein’s.) Later observations of the visible shape of the Sun by Henry Hill
and others, along with observations to try to better understand the temperature differences,
did not fully resolve this controversy.

The resolution came with the advance of helioseismology. This was the discovery that the
Sun vibrates in a superposition of thousands of normal modes with an array of frequencies,
as could be observed by measuring the frequency spectrum of Doppler-shifted solar spectral
lines. The specific pattern of frequencies depends on the Sun’s angular-velocity profile.
Through a systematic program of ground-based and space-based observations of the Sun,
it became possible to determine the Sun’s rotational profile over much of its interior. The
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conclusion was that the core does not rotate much faster than the surface, and solar models
consistent with this information produced the currently accepted value of J2 = 2.2 × 10−7;
this is approximately what one would infer from a Sun that rotates uniformly at its observed
surface rate. The bottom line is that, as far as Mercury’s motion and general relativity are
concerned, the solar quadrupole moment does not play a significant role.

The quadrupole moment of the Earth does play an important role in the motion of
artificial satellites. The effect on the line of nodes can be examined for a satellite placed on
a circular orbit with radius a. Using (J2)⊕ = 1.08 × 10−3 and dividing �� by the satellite’s
orbital period P = 2πa3/2/(Gm)1/2 = 83.91(a/R)3/2 minutes, we can show that(

d�

dt

)
sec

= −3639

(
R

a

)7/2

cos ι degrees/year, (3.95)

where R is the Earth’s radius. For example, the orbit of the Laser Geodynamics Satellite
(LAGEOS) I, with a = 1.93R and ι = 109◦.8, precesses at a rate of 120 degrees per year.
A satellite with a = 1.5R and ι = 65.9◦ would precess at a rate of 360 degrees per year.
Such an orbit is called Sun synchronous because it always presents the same face to the
Sun, varying only in its inclination relative to the ecliptic because of the 23.5◦ tilt of the
Earth’s spin axis.

3.4.4 Tidally interacting bodies

In our next case study we examine a system of two bodies that deform each other by
tidal interactions. The physics of tides was reviewed in some depth in Sec. 2.5, and here
we consider a situation in which the orbital period P = 2πa3/2/(Gm)1/2 is long compared
with the hydrodynamical time scale Tint ∼ (Gρ)−1/2 ∼ R3/2/(Gm)1/2 that characterizes the
internal dynamics of each body; this is the realm of static tides.

We first take the bodies to be non-rotating. According to the theory developed in
Sec. 2.5.1, a body of radius R subjected to a tidal potential Utidal = − 1

2E jk x j xk acquires
a mass quadrupole moment given by G I〈 jk〉 = − 2

3 k2 R5E jk , with k2 denoting the body’s
gravitational Love number, which depends on the details of its internal structure. In the
case of a two-body system, we have a first body of mass m1, radius R1, Love number (k2)1,
and quadrupole moment I 〈 jk〉

1 , and a second body of mass m2, radius R2, Love number
(k2)2, and quadrupole moment I 〈 jk〉

2 . According to Eq. (2.275), the tidal quadrupole mo-
ment created by m2 and acting on m1 is given by E jk

1 = −(Gm2/r3)(3n j nk − δ jk), while
the tidal moment created by m1 and acting on m2 is E jk

2 = −(Gm1/r3)(3n j nk − δ jk); as
usual, we have that m := m1 + m2, r := r1 − r2, r := |r|, and n := r/r . From all this we
find that the tidally-induced mass quadrupole moment of the first body is given by

I 〈 jk〉
1 = 2

3
(k2)1

m2 R5
1

r3

(
3n j nk − δ jk

)
, (3.96)

while

I 〈 jk〉
2 = 2

3
(k2)2

m1 R5
2

r3

(
3n j nk − δ jk

)
(3.97)

is the mass quadrupole moment of the second body.



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-03 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 12:22

170 Newtonian orbital dynamics

The equations of motion for two deformed bodies were obtained back in Sec. 1.6.7,
and Eq. (1.220) provides an expression for the relative acceleration a := a1 − a2. If we
remove the Keplerian term, truncate the multipole expansions to the leading, quadrupole
order, and neglect the quadrupole–quadrupole interaction (which is much smaller than the
monopole–quadrupole interactions that we keep), we obtain

f j = 1

2
Gm

(
I 〈kn〉
1

m1
+ I 〈kn〉

2

m2

)
∂ jkn

(
1

r

)
(3.98)

for the perturbing force. Inserting the preceding expressions for the mass quadrupole
moments, as well as Eq. (1.152) for ∂ jknr−1, we find that this becomes

f = −6
Gm

r7

(
(k2)1

m2

m1
R5

1 + (k2)2
m1

m2
R5

2

)
n. (3.99)

The perturbing force is directed along n, and its only non-vanishing component is R. With
S = W = 0, we see that the tidal interaction has no effect on p, ι, and �; the only orbital
elements that can undergo a change are e and ω.

We insert our expression forRwithin Eqs. (3.69), integrate over a complete orbital cycle,
and obtain the secular changes �e = 0 and

�ω = 30π

(
1 + 3

2
e2 + 1

8
e4

)[
(k2)1

m2

m1

(
R1

p

)5

+ (k2)2
m1

m2

(
R2

p

)5
]
. (3.100)

These results imply that e (and therefore a) do not undergo a secular change, but the
pericenter advances at a steady rate that depends on the orbital parameters, the body
radii, and the gravitational Love numbers. Astronomers call this phenomenon the apsidal
advance, and for a class of close binaries, this effect gives an important clue to the internal
structure of each star, via the ability to infer k2. These systems have masses of the order of
a few solar masses, orbital periods of the order of 10 days, and modest eccentricities. The
resulting apsidal advance can then be expressed as the rate(

dω

dt

)
sec

= 0.06 f (e)

(
M�
m

)5/3(10 days

P

)13/3

×
[

(k2)1

0.01

m2

m1

(
R1

R�

)5

+ (k2)2

0.01

m1

m2

(
R2

R�

)5
]

degrees/century, (3.101)

where f (e) = (1 + 3
2 e2 + 1

8 e4)/(1 − e2)5. Many close binaries are eclipsing, and by com-
bining light-curve data on the timing of eclipses with spectroscopic data on the orbital
motion, it is possible to determine the masses and radii as well as the apsidal advance rate,
and thereby estimate k2 for each star. In most cases, there is good agreement between the
values of k2 obtained by implementing this method and those determined by stellar models
for stars having the observed masses and spectra. As we shall see in Chapter 10, the general
relativistic contribution to the apsidal advance is small, generally a few percent of the tidally
induced advance.



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-03 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 12:22

171 3.4 Case studies of perturbed Keplerian motion

Box 3.4 DI Herculis: A tidal troublemaker

There are a few systems for which the nice picture of a tidally induced apsidal advance does not work. The
most famous isDIHerculis, a high eccentricity (e � 0.48), highmass (m � 10 M�) systemwith a10.55
day period. In this case, the relativistic contribution to the apsidal advance is large, 2.34 degrees per century,
while the tidal contribution is predicted to be 1.93 degrees per century, giving a total predicted advance of
4.27 degrees per century. Unfortunately, the observed apsidal advance is only 1.00 ± .30 degrees per cen-
tury. While there were a few attempts to use this discrepancy as evidence against general relativity, more
conventional explanations involve purely Newtonian mechanisms. First, there could be a large misalignment
between the rotation axis of each star and the orbital plane, such that the contribution of the rotationally-
induced quadrupole moments to�ωwould be negative, or retrograde. Second, there could be a third star in
the vicinity of the system, whose perturbative effects on all the orbital elements would complicate how�ω

is inferred from the eclipse light-curve data, leading to a value in better agreement with the prediction. The
book is not yet closed on DI Herculis.

Our discussion thus far has excluded the dissipative aspects of tidal dynamics that were
reviewed in Sec. 2.5.2. To explore these effects we examine specifically the case of a moon
orbiting a planet. We take the first body to be the planet, the second body to be the moon,
and we place the bodies on a circular orbit of relative separation r . Both bodies are now
rotating, and we take the moon to be tidally locked, so that it rotates with the same angular
velocity as the orbit. The planet, on the other hand, rotates with an angular velocity ω1 that
differs, in general, from the orbital angular velocity �.

According to Eq. (2.277), the quadrupole moment of each body is given by

G I〈 jk〉 = −2

3
k2 R5

(
E jk − τ Ė jk

)
(3.102)

in the body’s rotating frame. The effect of the first term was investigated previously, and
we henceforth ignore it. We keep the second term, the one associated with the dissipative
aspects of the tidal interaction; the parameter τ is the body’s viscous delay. Because the
moon is co-rotating with the orbit, the tidal field measured in its rotating frame is constant,
and this implies that we can set I 〈 jk〉

2 = 0; for our purposes here, the moon is not deformed
by the tidal forces exerted by the planet. The planet, however, is deformed by the moon’s
tidal field, and we find that its quadrupole moment is given by

I 〈 jk〉
1 = −2(k2)1

m2 R5
1

r3
(� − ω1)τ1

(
n jλk + λ j nk

)
(3.103)

in the rotating frame. Inserting this within the perturbing force of Eq. (3.98), we find that
its dissipative piece is given by

f diss = −6(k2)1Gm
m2

m1

R5
1

r7
(� − ω1)τ1 λ. (3.104)

Its only non-vanishing component is Sdiss := f diss · λ.
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The dissipative piece of the perturbing force can now be inserted within the osculating
equations (3.69). We find that r is the only orbital element that is affected by the perturbation,
and that it changes by

�r = −24π (k2)1
m2

m1

R5
1

r4
(� − ω1)τ1 (3.105)

in the course of a complete orbital cycle. The sign of the change is related to the sign of
� − ω1. When ω1 < �, that is, when the moon orbits faster than the planet rotates, we
find that �r < 0, so that the moon slowly approaches the planet in a shrinking orbit; an
example of such a situation is found in the Mars–Phobos system. When ω1 > �, that is,
when the planet rotates faster than the moon orbits, we find instead that �r > 0, so that the
moon recedes from the planet in an expanding orbit; the Earth–Moon system is a familiar
example of such a situation. These conclusions are in accord with our discussion of angular-
momentum transfer in Sec. 2.5.2. We saw that the planet gains spin angular momentum
when ω1 < �, and the shrinking orbit confirms that this gain comes at the expense of the
orbital angular momentum. Similarly, the planet loses its spin when ω1 > �, and this loss
allows the orbit to gain angular momentum and to expand.

3.4.5 Luni-solar precession of the Earth

In this final case study we describe how the gravitational attraction of the Moon and the
Sun on an oblate Earth causes a precession of its spin around the normal to the ecliptic
plane. This is the origin of the famous precession of the equinoxes, with its period of
approximately 26 000 years.

The motion of a body’s spin vector S subjected to gravitational torques exerted by other
bodies was determined back in Sec 1.6.8. According to Eq. (1.240), an axisymmetric body
of mass m, radius R, and dimensionless quadrupole moment J2, placed in the gravitational
field of a first mass m1 at a distance r1, and of a second mass m2 at a distance r2, undergoes
a spin precession described by

d S

dt
= −3Gm J2 R2

[
m1

r3
1

(e · n1)(e × n1) + m2

r3
2

(e · n2)(e × n2)

]
. (3.106)

Here, e is the direction of the body’s rotation axis, so that S = Se, n1 is the direction to
m1, and n2 the direction to m2. Note that in this application, m stands for the body’s mass
instead of the total mass of the system. It is easy to see from Eq. (3.106) that S is a constant,
so that d S/dt = Sde/dt .

For simplicity, and as a rather good approximation, we take the Moon and the Sun to
move on circular orbits in the ecliptic plane, which we identify with the reference X–Y
plane. The direction to the Moon is then

n1 = cos(�1t) eX + sin(�1t) eY , (3.107)

with �1 denoting the Moon’s angular velocity, while the direction to the Sun is

n2 = cos(�2t + ψ) eX + sin(�2t + ψ) eY , (3.108)
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with �2 denoting the Sun’s angular velocity, and ψ representing the Sun’s initial phase on
its orbit. The Earth’s rotation axis is tilted by an angle α = 23.4◦ relative to the ecliptic,
and we express its direction as

e = sin α cos β eX + sin α sin β eY + cos α eZ , (3.109)

in terms of a time-dependent precessional angle β. As we shall see, Eq. (3.106) implies
that α remains constant on a secular time scale.

We insert these expressions within Eq. (3.106) and average the result over a large number
of orbital cycles. We obtain

(
de

dt

)
sec

= −3Gm J2 R2

2S
sin α cos α

(
m1

r3
1

+ m2

r3
2

)(
− sin β eX + cos β eY

)
. (3.110)

Substitution of Eq. (3.109) on the left-hand side confirms that (dα/dt)sec = 0, and gives
rise to a rate of change for the precessional angle,

(
dβ

dt

)
sec

= −3Gm J2 R2

2S
cos α

(
m1

r3
1

+ m2

r3
2

)
. (3.111)

Inserting the relevant numbers, including S = 5.86 × 1033 kg m2/s and J2 = 1.08 × 10−3,
we obtain |(dβ/dt)sec| = 7.74 × 10−12 rad/s, or 5040 as/century, which is very close to
the accepted value of 5029 as/century. The precessional period Pprec = 2π |(dβ/dt)sec|−1

amounts to the previously quoted value of 26 000 years.

3.5 More bodies

We saw back in Sec. 3.2 that the problem of two spherical bodies moving under their
mutual gravitational attraction can be solved completely and exactly. The same cannot be
said, however, when the bodies have significant deformations from spherical symmetry, or
when we go beyond two bodies; in such cases there are no exact solutions, except in very
special situations. In this section we touch briefly on the three-body problem, and say a few
words about the general N -body problem; throughout this section the bodies are assumed
to be spherical.

3.5.1 The 3-body problem

General problem

Adding just one body to a two-body system brings a remarkable complexity to the problem
of motion. The equations of motion are simple enough to write down. In the familiar
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notation we have

a1 = −Gm2
r12

r3
12

− Gm3
r13

r3
13

, (3.112a)

a2 = +Gm1
r12

r3
12

− Gm3
r23

r3
23

, (3.112b)

a3 = +Gm1
r13

r3
13

+ Gm2
r23

r3
23

, (3.112c)

where, for example, r12 := r1 − r2. According to the discussion of Sec. 1.6.6, the equations
of motion admit the conserved quantities

P = m1v1 + m2v2 + m3v3, (3.113a)

L = m1r1 × v1 + m2r2 × v2 + m3r3 × v3, (3.113b)

E = 1

2
m1v

2
1 + 1

2
m2v

2
2 + 1

2
m1v

2
2 − Gm1m2

r12
− Gm1m3

r13
− Gm2m3

r23
. (3.113c)

Momentum conservation implies that the system’s barycenter, situated at

R := 1

M

(
m1r1 + m2r2 + m3r3

)
, (3.114)

with M := m1 + m2 + m3, moves uniformly according to R(t) := R(0) + P t/M . We shall
describe the 3-body system in the barycentric frame, and set R = 0 at all times.

In the two-body problem it proved helpful to write the equations of motion in terms of
the separation vector between the two bodies, which produces a reduction to an effective
one-body problem. Here we follow Jacobi and accomplish a similar reduction to an effective
two-body problem by introducing the alternative variables

r := r1 − r2, (3.115a)

ρ := r3 − m1

m
r1 − m2

m
r2, (3.115b)

in which m := m1 + m2; the vector r is the separation between body 1 and body 2, while ρ

is the separation between body 3 and the barycenter of the 1–2 subsystem. The barycenter
condition R = 0 can be used to express each position vector in terms of the new variables;
we find that

r1 = m2

m
r − m3

M
ρ, (3.116a)

r2 = −m1

m
r − m3

M
ρ, (3.116b)

r3 = m

M
ρ. (3.116c)

Similar relations hold between the individual velocity vectors and the relative velocities v :=
d r/dt and V := dρ/dt . The separation vectors become r12 = r , r13 = −(ρ − m2r/m),
and r23 = −(ρ + m1r/m) in the Jacobi variables.
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Making the substitutions, we quickly find that the equations of motion of the effective
two-body problem are

d2r

dt2
= −Gm

r

r3
+ Gm3

(
ρ − m2r/m

|ρ − m2r/m|3 − ρ + m1r/m

|ρ + m1r/m|3
)

, (3.117a)

d2ρ

dt2
= −G M

m

(
m1

ρ − m2r/m

|ρ − m2r/m|3 + m2
ρ + m1r/m

|ρ + m1r/m|3
)

, (3.117b)

and that the conserved quantities become

L = m1m2

m
r × v + mm3

M
ρ × V , (3.118a)

E = 1

2

m1m2

m
v2 + 1

2

mm3

M
V 2 − Gm1m2

r
− Gm1m3

|ρ − m2r/m| − Gm2m3

|ρ + m1r/m| (3.118b)

in the Jacobi variables.
The equations of motion (3.117) are extraordinarily complex, and in spite of massive

efforts by the best physicists and mathematicians of past centuries, including Lagrange,
Laplace, Jacobi, Hill, and especially Poincaré, the solution space is still poorly understood
today. Special solutions are known. For example, when the three bodies are confined to
a plane it is possible to find solutions with r12 = r13 = r23, so that the bodies form an
equilateral triangle. In this configuration, each body follows its own elliptical orbit around
the barycenter, with the triangle expanding and shrinking as the bodies pass simultaneously
through their apocenter and pericenter; in the special case of circular orbits, the three bodies
rotate as a rigid equilateral triangle around the barycenter. Another example is the “figure-
of-eight” solution, in which three equal-mass bodies chase each other on a closed orbit
that takes the shape of the number eight; the solution has zero total angular momentum.
Understanding the three-body problem is of considerable astrophysical interest, since over
500 stars in our galaxy have been identified as triple systems, including the north star Polaris
and our nearest neighbor, Alpha Centauri.

Restricted problem

There is a special case of the three-body problem that offers sufficient simplicity to permit
a detailed exploration. Known as the restricted three-body problem, this is a situation in
which one of the three bodies has a negligible mass compared to the others, and the other
two bodies are placed on a circular orbit, undisturbed by the third body. In this case the
three-body problem reduces to an independent two-body problem with a specified solution
(the circular orbit), and the decoupled problem of a test body moving in the gravitational
field of the orbiting bodies.

We take the light body to be m3, and let m3 � m1 and m3 � m2, so that M � m =
m1 + m2. In this limit the equations of motion become d2 r̄/dt2 = −Gm r̄/r3 for the two-
body system, and

d2ρ̄

dt2
= −Gm1

ρ̄ − m2 r̄/m

|ρ̄ − m2 r̄/m|3 − Gm2
ρ̄ + m1 r̄/m

|ρ̄ + m1 r̄/m|3 (3.119)
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for the third body; the reason for adorning each vector with an overbar will be revealed
presently. In this limit we have r̄1 = (m2/m)r̄ , r̄2 = −(m1/m)r̄ , and r3 = ρ̄. The circular
orbit of the two-body system is described by

r̄ = r cos(�t) ēx + r sin(�t) ēy, (3.120)

with r = constant and � :=
√

Gm/r3 denoting the orbital angular velocity.
The equations are presented in a frame (x̄, ȳ, z̄) that is attached to the barycenter of the

three-body system. This frame is non-rotating, and accordingly, the motion of the two-body
system is described by the circular orbit of Eq. (3.120). To proceed it is helpful to switch
reference frames, and to choose instead a frame (x, y, z) that is co-rotating with the orbiting
bodies. The tools to achieve this were developed near the end of Sec. 2.3.1, and the notation
adopted here, with bars placed on the non-rotating coordinates and no decoration placed
on rotating coordinates, follows the conventions adopted back in Chapter 2. The coordinate
transformation is given by x̄ = x cos �t − y sin �t , ȳ = x sin �t + y cos �t , z̄ = z, and
the two-body system appears stationary in the rotating frame; the separation vector is now
given by

r = r ex , (3.121)

and body 1 is now fixed at coordinates x1 = (m2/m)r and y1 = 0, while body 2 is at
coordinates x2 = −(m1/m)r and y2 = 0.

Simple manipulations reveal that the equations of motion of the test body become

d2ρ

dt2
+ 2� × dρ

dt
= ∇� (3.122)

in the rotating frame, where � := � ez is the angular-velocity vector, and

� = 1

2
�2

[
ρ2 − (ρ · ez)

2
] + Gm1

|ρ − m2r/m| + Gm2

|ρ + m1r/m| , (3.123)

a generalized potential that includes both gravitational and centrifugal terms; in Eq. (3.122)
the gradient operator ∇ refers to the three components of the vector ρ in the rotating
frame. The equations admit a first integral, which is obtained by taking the scalar product
of Eq. (3.122) with dρ/dt and recognizing that each term is a total derivative with respect
to t . Integration produces the Jacobi integral

1

2
V 2 − � = C, (3.124)

where V := |dρ/dt | is the speed of the test body in the rotating frame, and C is a constant
of the motion, a generalized energy known as Jacobi’s constant.

Equilibria of the restricted problem

The motions predicted by Eq. (3.122) are extremely diverse, and a complete exploration
would require numerical integration of the equations. The question we shall investigate
here is whether the equations admit stationary solutions with dρ/dt = 0 = d2ρ/dt2. If
such solutions exist, they would occur at values of ρ such that ∇� = 0, that is, at stationary
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points of the generalized potential. A little thought reveals that a stationary solution requires
the test body to be in the same plane as the orbiting bodies.

To simplify the analysis we adopt r as a unit of length, and divide all distances by r so
that they become dimensionless. Similarly, we adopt m := m1 + m2 as a unit of mass, and
divide all masses by m so that they too become dimensionless. In those units, the first body
is situated at x1 = m2, the second body at x2 = −m1, and the orbital angular velocity is√

G. We take the test body to have coordinates ρ = (x3, y3, 0), and let

r1 := r13 = |ρ − m2r/m| =
√

(x3 − m2)2 + y2
3 , (3.125a)

r2 := r23 = |ρ + m1r/m| =
√

(x3 + m1)2 + y2
3 . (3.125b)

With m1 + m2 now restricted to be unity, the individual masses are determined by the mass
ratio q := m1/m2 ≤ 1; we have that

m1 = q

1 + q
, m2 = 1

1 + q
, (3.126)

and we adopt the convention that the first body will be the less massive of the two main
bodies.

The generalized potential is given by

G−1� = 1

2

(
x2

3 + y2
3

) + m1

r1
+ m2

r2
(3.127)

in the rescaled variables, and differentiation with respect to x3 and y3 produces the
equilibrium conditions x3 − m1(x3 − m2)/r3

1 − m2(x3 + m1)/r3
2 = 0 and y3 − m1 y3/r3

1 −
m2 y3/r3

2 = 0. These can be re-expressed as

0 = m1(x3 − m2)(1 − r−3
1 ) + m2(x3 + m1)(1 − r−3

2 ), (3.128a)

0 = y3
[
m1(1 − r−3

1 ) + m2(1 − r−3
2 )

]
, (3.128b)

by exploiting the identity m1 + m2 = 1. The existence of stationary solutions hinges on
finding solutions to these algebraic equations. As we shall see below, there are five distinct
solutions, which are known as the Lagrange points L1, L2, L3, L4, and L5. The first three
equilibria have y3 = 0 and describe co-linear configurations, with all three bodies aligned
on the x-axis; these equilibria are unstable. The last two equilibria have r1 = r2 = 1 and
describe triangular configurations, with all three bodies equidistant from each other; these
equilibria are stable for sufficiently small mass ratios. The five equilibria are represented in
Fig. 3.3.

We first consider the solutions to Eqs. (3.128) with y3 = 0. In this case r1 = |x3 − m2|,
r2 = |x3 + m1|, and we must distinguish three subcases. For L1 we take the test body
to be between the other two bodies, so that −m1 < x3 < m2; in this case we have that
r1 = m2 − x3, r2 = x3 + m1, and Eq. (3.128a) can be expressed as

q = r2 − r−2
2

r1 − r−2
1

, r1 + r2 = 1 (L1). (3.129)
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L1 L2L3

L4

L5

m1m2

−1

−1 0 1

0

1

Fig. 3.3 The five Lagrange points of a restricted three-body system with mass ratio q = 1
2 .

It is easy to see that a solution exists for any value of q ≤ 1, with r1 ≤ 1
2 . For example,

with q = 1
2 so that m1 = 1

3 and m2 = 2
3 , the solution is x3 � 0.23742. For L2 we take the

test body to be beyond body 1, so that x3 > m2; in this case we have that r1 = x3 − m2,
r2 = x3 + m1, and Eq. (3.128a) can now be expressed as

q = −r2 − r−2
2

r1 − r−2
1

, r2 − r1 = 1 (L2). (3.130)

A solution exists for any value of q ≤ 1 with r1 ≤ 0.7. For example, with q = 1
2 the

solution is x3 � 1.24905. Finally, for L3 we take the test body to be beyond body 2, so
that x3 < −m1; in this case we have that r1 = m2 − x3, r2 = −(x3 + m1), and Eq. (3.128a)
yields

q = −r2 − r−2
2

r1 − r−2
1

, r1 − r2 = 1 (L3). (3.131)

A solution exists for any value of q ≤ 1 with 1.7 ≤ r1 ≤ 2. For example, with q = 1
2 the

solution is x3 � −1.13636.
We next consider the solutions to Eqs. (3.128) with y3 �= 0. It is easy to see that a

simultaneous solution to these equations requires r1 = r2 = 1, so that the configuration is
an equilateral triangle. Inserting this constraint within Eq. (3.125) reveals that there are two
distinct solutions described by x3 = 1

2 − m1 = m2 − 1
2 and y3 = ± 1

2

√
3; the solution with

y3 > 0 is L4, and the one with y3 < 0 is L5. For q = 1
2 , L4 is situated at x3 = 0.16667 and

y3 = 0.86603, while L5 is situated at x3 = 0.16667 and y3 = −0.86603.
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A stability analysis reveals that L1, L2, and L3 are unstable equilibria: small displace-
ments from these points produce motions that take the test body far away. The remaining
Lagrange points, however, are stable provided that (refer to Exercise 3.12)

q <
1 − 1

9

√
69

1 + 1
9

√
69

� 0.04; (3.132)

in this case a small displacement produces a small oscillation around the equilibrium point.
In the solar system, the stable Lagrange points of the Sun–Jupiter system are occupied

by large collections of asteroids. These orbit the Sun along Jupiter’s orbital path, with one
group, called the “Greek” asteroids, 60◦ ahead of it (at L4), and the other group, called the
“Trojan” asteroids, 60◦ behind it (at L5). The asteroids remain in those positions because
they are less disturbed by planetary perturbations, being protected by the weak potential
well provided by the gravitational fields of the Sun and Jupiter combined with centrifugal
forces. Similarly, there is a distribution of interplanetary dust at the Earth–Sun Lagrange
points, and two small moons lie at the stable Lagrange points of the system formed by
Saturn and Tethys, one of its moons.

It turns out that the L1 and L2 points of the Earth–Sun system are very useful places to
park a spacecraft. Even though these equilibria are unstable, the instability is weak, and a
relatively small amount of thrust is sufficient to keep the spacecraft in a small orbit around
the Lagrange point. For example, the Solar and Heliospheric Observatory (SOHO) was
placed at L1, pointing continuously sunward. The Wilkinson Microwave Anisotropy Probe
(WMAP) and the Planck satellite were both placed at L2, so that they could point away
from the Sun and Earth. The James Webb Space Telescope (the replacement for Hubble) is
also destined for L2.

3.5.2 The N -body problem

Very little can be said about the detailed motion of an N -body system, even when the
equation of motion of each body is given by the simplest expression

aA = −
∑
B �=A

Gm B
r AB

r3
AB

. (3.133)

General statements can still be made, but they concern only the most global and coarse-
grained aspects of the motion. For example, we know from Sec. 1.6.6 that the system’s total
momentum, energy, and angular momentum are conserved quantities. These, we recall, are
given by P = ∑

A m AvA, E = T + �, and L = ∑
A m A r A × vA, with

T = 1

2

∑
A

m Av2
A (3.134)

denoting the total kinetic energy, and

� = −1

2

∑
A

∑
B �=A

Gm Am B

rAB
(3.135)
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the total gravitational potential energy. Another global statement is the virial theorem

1

2

d2 I

dt2
= 2T + �, (3.136)

where I = ∑
A m A|r A|2 is the quadrupole-moment scalar of the N -body system. This

version of the virial theorem is a specialization to isolated bodies of the general theorem of
Sec. 1.4.3, which applies to any fluid configuration. Though they are limited in information
content, the global statements are nevertheless useful because they rest upon the most
fundamental aspects of Newtonian dynamics. They can, actually, be very powerful at
probing the nature of complicated systems. For example, the virial theorem played an
important role in deducing the existence of dark matter in the universe.

The virial theorem applies when an N -body system such as a star cluster can be regarded
as being isolated and gravitationally bound, and it is useful when the system can also be
regarded as being in a steady state, so that Ï ≈ 0. In such situations the theorem implies that
T ≈ 1

2 |�|. The kinetic energy of the cluster can be expressed as 1
2 M〈v2〉, where M is the

total mass of the cluster, and 〈v2〉 is a suitable average of v2 over all stars in the cluster. On
the other hand, the gravitational potential energy is approximately equal to −G M2/(2R),
where R is the cluster’s radius. If the distribution of velocities is assumed to be isotropic,
then 〈v2〉 ≈ 3〈v2

r 〉, with vr denoting the component of the stellar velocity along the line of
sight, which can be measured from the Doppler shift of the spectral lines (after removing
the overall shift caused by the bulk motion of the cluster relative to the Earth). The radius
R is determined from the cluster’s angular size combined with an estimate of its distance.
With these ingredients, the “virial mass” of the cluster is given by G Mvirial � 6R〈v2

r 〉, and
within a factor of order unity, we should expect this to be a reliable estimate of the cluster’s
total mass. The problem is that the virial mass determined in this way turns out to be as
much as 10 times larger than the “visible mass” determined by measuring the brightness of
the cluster and multiplying by the mass-to-light ratio known from stellar-structure theory
for the kinds of stars contained in the cluster. When the virial method was applied to clusters
of galaxies (with each galaxy viewed as a point body), the discrepancy between the virial
and visible masses was even larger.

One proposed explanation for the discrepancy held that star clusters are really not bound
at all, so that the virial theorem does not apply to them. Another possible explanation is
that the clusters are not in a steady state, so that the assumption Ï ≈ 0 is not valid. But
observations of many clusters and detailed analyses have suggested that these avenues are
not promising. An alternative explanation is that there is additional mass in the system
that contributes to the gravitational binding, but does not emit any light – this is the dark
matter hypothesis. Eventually it was shown that the amount of dark matter implied by the
virial-mass discrepancy in star clusters and galaxies is consistent with the amount required
to explain the rotational properties of many spiral galaxies, the angular fluctuations in
the cosmic microwave background radiation, and the growth of large-scale structure in the
early universe. The dark matter hypothesis has now become a central feature of the standard
cosmological model.
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3.6 Lagrangian formulation of Newtonian dynamics

Our exploration of Newtonian gravity is coming to a close, but we would be remiss if
we didn’t touch upon the wonderful developments initiated by Maupertuis and Euler and
completed by Lagrange and Hamilton. Their principle of least action has become a unifying
principle for all of physics, being applicable to such disparate fields as mechanics, fluid
dynamics, and field theory including general relativity. Our treatment here will be extremely
brief; we expect the reader to have encountered this topic in greater depth elsewhere. We
include it regardless because we shall have occasion to refer to Lagrangians and action
functionals in later portions of the book, and wish to provide a quick reference manual to
accompany these references.

3.6.1 Lagrangian and action principle

We consider a dynamical system with an arbitrary number of degrees of freedom. We
describe the motion of the system with generalized coordinates q j (t), which may be
chosen arbitrarily to give the simplest description; the generalized coordinates give rise to
the generalized velocities q̇ j (t) := dq j/dt . The system possesses a kinetic energy T and
a potential energy � which depend upon the generalized coordinates and velocities. The
system’s Lagrangian function is defined to be L(q̇ j , q j ) := T − �. The system’s action
functional is

S[q] :=
∫ t2

t1

L(q̇ j , q j ) dt, (3.137)

the integral of the Lagrangian function between two fixed times. The action can be evaluated
for any path q j (t) that joins an initial configuration q j (t1) to a final configuration q j (t2),
whether or not this path satisfies the equations of motion of the dynamical system.

The true path of the dynamical system – the one that satisfies the equations of motion –
is identified as the one that produces an extremum of the action functional. This means the
following. Suppose that the true path is q̄ j (t), and that we examine an arbitrary variation
of this path described by the small displacements δq j (t), thereby constructing a trial
path q j

trial(t) = q̄ j (t) + δq j (t). We insist that the trial path should begin from the same
configuration as the true path, and that it should also end in the same configuration as
the true path, so that the displacements must obey δq j (t1) = 0 = δq j (t2); apart from this
the functions δq j (t) are arbitrary. The action functional can be evaluated on the true path,
and it can be evaluated on the trial path; it will be an extremum when the difference
δS := S[qtrial] − S[q̄] vanishes to first order in the displacements. As we shall see, the
condition δS = 0 gives us a means to identify q̄ j (t). It can be shown that when t2 − t1 is
not too large, the extremum is in fact a minimum – the action is minimized when evaluated
along the true path. When t2 − t1 increases beyond a certain threshold (called a kinetic
focus), the extremum turns into a saddle point of the action functional.
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To carry out the variation of the action we write

δS = S[qtrial] − S[q̄]

=
∫ t2

t1

[
L
(
q̇ j

trial, q j
trial

) − L
(

˙̄q j , q̄ j
)]

dt (3.138)

and express the trial Lagrangian as a Taylor expansion about the true path, obtaining

L
(

˙̄q j , q̄ j
) + ∂L

∂ q̇ j
δq̇ j + ∂L

∂q j
δq j

to first order in the displacements; summation over the repeated index j is understood. The
variation of the action becomes

δS =
∫ t2

t1

(
∂L

∂ q̇ j

d

dt
δq j + ∂L

∂q j
δq j

)
dt, (3.139)

and integration by parts of the first term produces

δS = ∂L

∂ q̇ j
δq j

∣∣∣∣
t2

t1

+
∫ t2

t1

(
− d

dt

∂L

∂ q̇ j
+ ∂L

∂q j

)
δq j dt. (3.140)

The boundary terms vanish because of the conditions δq j (t1) = 0 = δq j (t2), and since the
variations δq j (t) are otherwise arbitrary, we find that δS = 0 requires

d

dt

∂L

∂ q̇ j
− ∂L

∂q j
= 0. (3.141)

These are the Euler–Lagrange equations for the dynamical system, which give rise to
second-order differential equations for the generalized coordinates q j (t). The Euler–
Lagrange equations, therefore, provide the equations of motion to be satisfied by the
dynamical system, as dictated by the principle of extremum action.

The Euler–Lagrange equations can be written in the form

ṗ j = ∂L

∂q j
, (3.142)

in which p j := ∂L/∂q̇ j is the generalized momentum associated with the coordinate q j .
An immediate consequence of this equation is that when L does not depend explicitly on
one (or more) of its generalized coordinates, say q∗, then the associated momentum p∗ is
necessarily a constant of the motion. In this way, momentum conservation is seen to arise
as a consequence of a symmetry of the dynamical system.

3.6.2 Lagrangian mechanics of a two-body system

We apply these ideas to a system of two spherical bodies moving under their mutual
gravitational attraction. We follow the description of Sec. 1.6.7 and adopt the vari-
ables R := (m1/m)r1 + (m2/m)r2 and r := r1 − r2 as generalized coordinates; here
m := m1 + m2 is the total mass of the system, and μ := m1m2/m is the reduced mass. The
corresponding generalized velocities are V := d R/dt and v = d r/dt . The kinetic energy of
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the system is T = 1
2 mV 2 + 1

2μv2, and its gravitational potential energy is � = −Gμm/r .
The Lagrangian of the two-body system is therefore

L = 1

2
mV 2 + 1

2
μv2 + Gμm

r
. (3.143)

We see immediately that L does not depend explicitly on the coordinates R, and this implies
that the corresponding momentum P := ∂L/∂V = mV is constant; we have recovered the
fact that the total momentum of a two-body system is a conserved quantity. Taking this into
account, we recognize that the first term in the Lagrangian is an irrelevant constant which
plays no role in the dynamics of the relative orbit. We may remove it, and take the effective
Lagrangian to be

L = 1

2
μv2 + Gμm

r
. (3.144)

The reduction to an effective one-body problem has been achieved at the level of the
Lagrangian, instead of at the level of the equations of motion.

The gravitational potential energy � is spherically symmetric, and this motivates the use
of spherical polar coordinates (r, θ, φ) instead of the original Cartesian coordinates (x, y, z)
associated with the separation vector r . The transformation, given by x = r sin θ cos φ,
y = r sin θ sin φ, and z = r cos θ , can implemented directly within the Lagrangian, which
becomes

L = 1

2
μ

(
ṙ2 + r2 θ̇2 + r2 sin2 θ φ̇2

) + Gμm

r
. (3.145)

Another symmetry is revealed: the Lagrangian does not depend explicitly on φ, and the
generalized momentum pφ = ∂L/∂φ = μr2 sin2 θ φ̇ is a constant of the motion. Because φ

is an angular coordinate, pφ has the interpretation of an angular momentum, and it is in fact
the component of the angular-momentum vector L = μr × v in the z-direction. Because
this direction was selected arbitrarily in the definition of the spherical coordinates, we can
conclude that in fact, all components of the angular-momentum vector are conserved. This
statement implies that the motion takes place in a fixed orbital plane, and this plane can be
identified with the equatorial plane θ = π

2 without loss of generality.
Setting θ = π

2 and θ̇ = 0 in the Lagrangian, we finally obtain

L = 1

2
μ

(
ṙ2 + r2φ̇2

) + Gμm

r
(3.146)

for the fully reduced Lagrangian that governs the planar motion of a two-body system. At
this stage it is easy to show that the Euler–Lagrange equations produce the orbital equations
first obtained in Sec. 3.2.3.

3.6.3 Lagrangian mechanics of a test mass

To conclude this brief tour of Lagrangian mechanics, we examine the dynamics of a test
body in the gravitational field of other massive bodies. In this case the dynamical system
consists only of the test body, which is given a mass m, position r(t), and velocity v(t). The
gravity of the external bodies is described by their gravitational potential U (t, x), which



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-03 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 12:22

184 Newtonian orbital dynamics

is supposed to be known as a function of space and time. The particle’s kinetic energy
is 1

2 mv2, and its potential energy – its interaction energy with the remaining bodies – is
−mU (r), in which the potential is evaluated at x = r(t). The particle’s Lagrangian is

L = 1

2
mv2 + mU (r). (3.147)

In this case the Lagrangian possesses whatever symmetry is displayed by the gravitational
potential U ; in general there will be no particular symmetry.

The generalized momentum associated with r is p = ∂L/∂v = mv, which is recognized
as the usual momentum vector. The Euler–Lagrange equations read

d p

dt
= m∇U (r), (3.148)

in which the potential is differentiated with respect to r . The left-hand side is ma =
md2r/dt2, and the right-hand side is recognized as the gravitational force exerted by the
external bodies. We have recovered the familiar Newtonian equations of motion, ma = F
with F = m∇U .

Thus ends our survey of Newtonian gravity. Now onward with relativity!

3.7 Bibliographical notes

Kepler’s problem (Sec. 3.2) is a staple of Newtonian mechanics, and its solution is pre-
sented in most textbooks devoted to this topic, including French (1971). More complete
presentations, including the three-dimensional aspects of Keplerian orbits (as reviewed in
Sec. 3.2.5), are typically found in books on celestial mechanics; among our favorites are
the old classic by Brouwer and Clemence (1961) and the more modern text by Murray and
Dermott (2000).

The method of osculating orbital elements developed in Sec. 3.3 is also standard fare of
books on celestial mechanics; these also contain many more applications of the formalism
than the few presented in Sec. 3.4. The Kozai mechanism was discovered independently
by Lidov (1962) and Kozai (1962). The first measurement of the solar oblateness by Dicke
and Goldenberg is presented in their 1967 article. An accessible introduction to the rich
field of helioseismology can be found in Narayanan (2012). The motion of the Moon is
treated in great detail in Brown (1960). A broad overview of the gravitational N -body
problem (Sec. 3.5), with applications to the solar system, stellar and galactic dynamics, and
cosmology, is contained in the compilation of lectures edited by Steves and Maciejewski
(2001).

Our presentation of Lagrangian mechanics in Sec. 3.6 does not do justice to this most
elegant formulation of the laws of mechanics, and we add insult to injury by not even
mentioning the Hamiltonian and Hamilton–Jacobi versions of the theory. These topics,
fortunately, are thoroughly treated in many textbooks. A very terse but elegant presentation
can be found in the classic Mechanics by Landau and Lifshitz (1976), and a more leisurely
treatment in Goldstein, Poole, and Safko (2001).
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3.8 Exercises

3.1 In this problem we examine the conic sections of Kepler’s problem.
(a) For an orbit with e �= 1 and ω = 0, consider a coordinate transformation to

new variables x̄ and ȳ, of the form x̄ = r cos φ + pα, ȳ = r sin φ, where r =
p/(1 + e cos φ) and α is a constant. Find the value of α that converts the curve
to an ellipse or hyperbola, described by the equation

x̄2

A2
± ȳ2

B2
= 1,

where the positive and negative signs correspond to an ellipse and hyperbola,
respectively. Determine A and B in terms of the semi-latus rectum p and eccen-
tricity e.

(b) For e = 1, find the transformation that converts the curve into a parabola de-
scribed by x̄ = C ȳ2. Determine C in terms of p.

3.2 Suppose that the solar system is filled with a uniform distribution of dark matter
with constant mass density ρ. Taking this distribution into account, calculate the
modified gravitational potential of the Sun, and find the perturbing force f acting on
a planetary orbit. Find the relation between orbital period P and semi-major axis a
for a circular orbit, and calculate the secular changes in the planet’s orbital elements.
Place a bound on ρ using suitable solar-system data.

3.3 In some relativistic theories of gravity, the “graviton” is not massless as in general
relativity, but possesses a mass mg . In the Newtonian limit, the graviton mass gives
rise to a modified Poisson equation of the form(

∇2 + 1

λ2

)
U = −4πGρ,

in which λ = h/(mgc) is the Compton wavelength of the graviton. Show that the
spherically symmetric potential of a body of mass m is given by U = (Gm/r )e−r/λ.
Applying this to the Sun as in the preceding problem, place a bound on λ using
solar-system data.

3.4 A test body of mass μ orbits a body of mass m, radius R, and dimensionless
quadrupole moment J2 relative to a symmetry axis e; all other J�s are assumed
to vanish. Prove that the following quantities are constants of the orbital motion:
(a) The total energy, given by

E = 1

2
μv2 − Gμm

r
+ 1

2

Gμm J2 R2

r3

[
3(n · e)2 − 1

]
.

(b) The angular momentum along e, given by Le = μh · e, where h := r × v.
(c) A third quantity, constant to first order in J2, given by

C = h2 + J2 R2

[
(e · v)2 − 2

Gm

r
(e · n)2

]
,
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where n := r/r . This third constant is analogous to the “Carter constant” in the
Kerr geometry of a rotating black hole.

3.5 Consider a spherical body on an inclined, circular orbit about an axisymmetric body
of radius R and even multipole moments J�, with � = 2, 4, 6, and so on. To first order
in perturbation theory, calculate the secular changes in the relevant orbital elements.
In particular, show that:
(a) the inclination is constant, that is, �ι = 0;
(b) the line of nodes changes by an amount

�� = −3π cos ι

∞∑
�=2

J�

(
R

p

)�

C�,

where C2 = 1, C4 = − 5
2 (1 − 7

4 sin2 ι), and C6 = 35
8 (1 − 9

2 sin2 ι + 33
8 sin4 ι).

3.6 The equations that govern the evolution of the osculating orbital elements have
singularities when e = 0 and ι = 0.
(a) Show that the bad behavior of the equations when e = 0 can be cured by imple-

menting the transformation α = e cos ω and β = e sin ω. Obtain the osculating
equations for the new elements α and β.

(b) Show that the bad behavior of the equations when ι = 0 can be cured by im-
plementing the transformation μ = tan ι cos � and ν = tan ι sin �. Obtain the
osculating equations for the new elements μ and ν.

3.7 Show that the period of oscillation of the Kozai resonance is given by Eq. (3.89), and
that the orbital elements ω, ι, and e vary according to

ω = π

2
+ A sin(2π t/PKozai),

ι = ιc − 1

2
Aec cos(2π t/PKozai),

e = ec + 5

6
A sin ιc cos ιc cos(2π t/PKozai),

on a secular time scale; here A is an arbitrary amplitude for the oscillations.

3.8 From the equations for �e, �ω, and �ι in the Kozai mechanism, show that

e2 cos2 ω sin2 ι − 3

5
e2 + cos2 ι = constant .

3.9 (a) Consider a two-body system on a circular orbit with separation r and angular
velocity � = (Gm/r3)1/2, where m = m1 + m2 is the total mass. Body 2 may
be treated as a point mass, but body 1 is tidally distorted by body 2. Because of
tidal dissipation in body 1, r changes over one orbit by

�r = −24π (k2)1
m2

m1

R5
1

r4
(� − ω1)τ1 ,

where R1, ω1, (k2)1, and τ1 are the radius, rotational angular velocity, Love
number, and viscous delay of body 1, respectively – refer to Eq. (3.105). Find the
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rate of change of orbital angular momentum, L = μr2�. Comparing your result
with Eq. (2.287), what can you conclude about the total angular momentum of
the system, J = L + S1?

(b) The Earth–Moon distance is known to be increasing at a rate of about 3.8 cm/yr.
Assuming a value k2 ≈ 0.15 for the Love number of the Earth, estimate the angle
between the Earth’s tidal bulge and the Earth–Moon direction. Does the bulge lie
ahead of or behind that line?

(b) Show that when the Earth eventually becomes tidally locked with the Moon, the
length of the day (and of the month) will be about 48 current days. You may
ignore the rotational angular momentum of the Moon, and you may assume that
to a good approximation, the moment of inertia of the Earth about its rotation
axis is given by 0.33M⊕ R2

⊕.

3.10 Consider a point at a position r̄(t) on a circular orbit of radius r around a central body
of mass m, orbiting with angular velocity �, with �2 = Gm/r3. Consider also a test
body moving on nearby orbit, at a position δ r̄(t) relative to the point on the circular
orbit. Assume that δr � r .
(a) In a coordinate system that rotates around the central body with angular velocity

�, show that the equations of motion of the test body are given by

d2

dt2
δr + 2� × d

dt
δr = �2

[
3(n · δr)n − (ez · δr)ez

]
to first order in δr; here � := �ez is the angular-velocity vector, and n := r/r .

(b) Prove that the general solution to the equations of motion takes the form of the
linear superposition δr = c1δr1 + c2δr2 + c3δr3 + c4δr4, where cn are arbitrary
constants, and

δr1 = cos(�t − χ1) n − 2 sin(�t − χ1) λ,

δr2 = n − 3

2
�t λ,

δr3 = λ,

δr4 = cos(�t − χ4) ez,

are the four eigenmodes of the perturbed orbit; χn are arbitrary phases.
(c) Describe the motion that corresponds to each mode, and show that each mode

is generated by a perturbation in the orbital elements (p, e, ι, �) relative to the
unperturbed, circular orbit. Relate the constants cn to the variations of the orbital
elements.

(d) Find a solution with c2 = c3 = 0, but with c1 �= 0 and c4 �= 0, describing a
relative orbit that is circular, with a constant radius δr . What is the angle between
the plane of the relative orbit and that of the original, unperturbed orbit?

(e) Now find a solution describing three satellites that are moving on the same circular
relative orbit, such that initially they are placed at the vertices of an equilateral
triangle. Show that as each satellite follows its orbit, the constellation maintains
the shape of an equilateral triangle. This configuration was adopted for the three
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188 Newtonian orbital dynamics

satellites making up the Laser Interferometer Space Antenna (LISA), a proposed
space-based gravitational-wave detector.

3.11 In this problem we explore further the general three-body problem introduced in
Sec. 3.5.1.
(a) Show that there exist planar solutions for which r12 = r13 = r23.
(b) Show that the general bound solution for r := rAB is given by

r = p/(1 + e cos φ) ,

r2 dφ

dt
= (G Mp)1/2,

nAB = cos(φ − ψAB) eX + sin(φ − ψAB) eY ,

with an orbital period given by P = 2πa3/2/(G M)1/2, where a := p/(1 − e2)
and M := m1 + m2 + m3, and where the three phases ψAB differ by π

3 .
(c) Show that aA, the semi-major axes of the individual orbits, are given by

a1 = (m2
2 + m2m3 + m2

3)1/2

M
a,

with the others obtained by suitable permutations.

3.12 Consider a small displacement δρ about the Lagrange point L4 or L5 of the restricted
three body problem. Expand ∇� to first order in the displacement, and include the
Coriolis term in the equations of motion. Substitute δρ = δρ0e−i pt and show that the
solutions for the frequency p are real, and thus that the Lagrange points are stable, if
and only if the mass ratio q satisfies the criterion of Eq. (3.132).

3.13 Assuming that q := m1/m2 � 1, show that the unstable Lagrange points L1 and L2

lie on either side of body 1, at a distance d given by d � r (q/3)1/3, where r is the
distance between bodies 1 and 2. Calculate d for the Earth–Sun system.
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